Calc d<p>/dt: Calculate Derivative of Wave Function

  • Thread starter Thread starter Cogswell
  • Start date Start date
Cogswell
Messages
54
Reaction score
0

Homework Statement


Calculate ## \dfrac{d <p>}{dt} ##

Answer: ## \left< -\dfrac{\partial V}{\partial x} \right> ##

Homework Equations



Schrodinger equation: ## i \hbar \dfrac{\partial \Psi}{\partial t} = -\dfrac{\hbar ^2}{2m} \frac{\partial ^2 \Psi}{\partial x^2} + V \Psi ##

The Attempt at a Solution



Here's what I did:

## \displaystyle \dfrac{\partial}{\partial t} \int^{\infty}_{- \infty} \Psi ^* \left( \dfrac{\hbar}{i} \dfrac{\partial}{\partial x} \right) \Psi dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \dfrac{\partial}{\partial t} \Psi ^* \dfrac{\partial \Psi}{\partial x} dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \dfrac{\partial \Psi ^*}{\partial t} \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial t} \dfrac{\partial \Psi}{\partial x} \right] dx ## (Differentiation by Product rule)From the Schrodinger equation we get that: ## \dfrac{\partial \Psi}{\partial t} = \dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi ##

And it's conjugate: ## \dfrac{\partial \Psi ^*}{\partial t} = -\dfrac{i \hbar}{2m} \dfrac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* ##

Putting those into my integral I get:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \left( -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} + \dfrac{i}{\hbar} V \Psi^* \right) \dfrac{\partial \Psi}{\partial x} + \Psi^* \dfrac{\partial}{\partial x} \left( \dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi}{\partial x^2} - \dfrac{i}{\hbar} V \Psi \right) \right] dx ##

Expanding out everything:

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \Psi^* \dfrac{\partial}{\partial x} (V \Psi) \right] dx ##

## \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ -\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x} + \dfrac{i}{\hbar} V \Psi^* \dfrac{\partial \Psi}{\partial x} + \dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^* - \dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi * - \dfrac{i}{\hbar} \dfrac{\partial \Psi}{\partial x} V \Psi ^* \right] dx #### \displaystyle \dfrac{\hbar}{i} \int^{\infty}_{- \infty} \left[ \underbrace{-\dfrac{i \hbar}{2m} \frac{\partial ^2 \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x}}_1 + \underbrace{\dfrac{i \hbar}{2m} \frac{\partial ^3 \Psi}{\partial x^3} \Psi^*}_2 - \underbrace{\dfrac{i}{\hbar} \dfrac{\partial V}{\partial x} \Psi \Psi *}_3 \right] dx ##

I'm stuck at this point. I'm presuming there's a way to cancel out each of the integrals? I know the last integral is the one I want but I do not know how to cancel out the first 2.
 
Physics news on Phys.org
I'd have kept the operator notation for longer, vis...

##
\renewcommand{H}{\hat{H}} \renewcommand{p}{\hat{p}}
\renewcommand{\expn}[1]{\left \langle #1 \right \rangle}
\renewcommand{dt}[1]{\frac{d #1}{dt}}
\renewcommand{dx}[1]{\frac{d #1}{dx}}
\renewcommand{intf}[1]{\int_{-\infty}^\infty #1 \; dx}
\renewcommand{ddx}[1]{ \frac{d^2 #1}{dx^2} }## Need to show:$$\text{(1)... }\dt{}\expn{\hat{p}} = \expn{-\dx{V}}$$ (i.e. Newton's second law...)
- expand: $$\begin{array}{rl}
i\hbar \dt{}\expn{\p} & = i\hbar \dt{} \intf {\Psi^\star p\Psi} \\
&= \intf { \left ( i\hbar \dt{} \Psi^\star \right ) \hat{p} \Psi + \Psi^\star \left ( i\hbar\dt{}(\hat{p}\Psi ) \right )} \; \text{ ...(2)}
\end{array}$$ - from the Schrodinger equation: $$\text{(3)... }i\hbar\dt{} \Psi = \H\Psi\\
\text{(4)... } \dt{}\expn{\p} = \frac{1}{i\hbar}\intf{ \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi} $$... hence, need to show that $$\text{(5)... } \H \Psi^\star \p\Psi + \Psi^\star \H\p\Psi = -i\hbar\Psi^\star \dx{V} \Psi$$ - which, I think, is pretty much where you are up to ;)
(caveat: do not rely on me to get the math right - check!)

- note that $$\text{(6)... }\p\H = - i\hbar \dx{} \left ( -\frac{\hbar^2}{2m}\ddx{}+V \right )$$ ... gives you third-order differentiation in x as well as the dV/dx you need.

So how do you change the order of the operations?
 
Last edited:
If you want to continue on from where you got to, use integration by parts to move ##\frac{\partial}{\partial x}## between ##\Psi## and ##\Psi^*##.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top