alejandrito29
- 148
- 0
i need to integrate
-(p(y)f(y)')'=m^2w(y)f(y)
where
p(y)=e^{4ky}(1-4ak^2) and w=-4ae^{2y}k\delta(y)
but y between [0,infinity[
¿i calculate between \int^{epsilon}_0? or ¿i calculate between [-epsilon,epsilon]?
but, what is??
\int^{\epsilon}_0(p(y)f(y)')'dy
whit f is not continuous in zero
the result is
f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}
-(p(y)f(y)')'=m^2w(y)f(y)
where
p(y)=e^{4ky}(1-4ak^2) and w=-4ae^{2y}k\delta(y)
but y between [0,infinity[
¿i calculate between \int^{epsilon}_0? or ¿i calculate between [-epsilon,epsilon]?
but, what is??
\int^{\epsilon}_0(p(y)f(y)')'dy
whit f is not continuous in zero
the result is
f(+\epsilon)=-\frac{m^24akf(0)}{1-4ak^2}
Last edited: