Calculate conditional expectation of exponential variables

obst12
Messages
3
Reaction score
0

Homework Statement


Let X and Y be independent exponential random variables with parameters a and b. Calculate E(X|X+Y).

Homework Equations

The Attempt at a Solution


I'm pretty sure I have it, just want to make sure.

Joint density for X and Y is abe^(-ax)e^(-by) for x,y>0. Let Z=X and W=X+Y so X=Z and Y=W-Z. The Jacobian is 1, so the joint density is

abe^(-az)e^(-bw+bz)=abe^(+bz-az) e^(-bw)

Marginal density for w is

\int_0^ w abe^(bz-az) e^(-bw) dz=ab(e^(bw-aw)-1) /(b-a)

So then conditional density is

(b-a)e^(bz-az) e^(-bw)/(e^(bw-aw)-1)

Then just integrate z from 0 to infinity to get
e^(-bw)/(1-e^(bw-aw))

Is this okay?
 
Physics news on Phys.org
obst12 said:

Homework Statement


Let X and Y be independent exponential random variables with parameters a and b. Calculate E(X|X+Y).

Homework Equations

The Attempt at a Solution


I'm pretty sure I have it, just want to make sure.

Joint density for X and Y is abe^(-ax)e^(-by) for x,y>0. Let Z=X and W=X+Y so X=Z and Y=W-Z. The Jacobian is 1, so the joint density is

abe^(-az)e^(-bw+bz)=abe^(+bz-az) e^(-bw)

Marginal density for w is

\int_0^ w abe^(bz-az) e^(-bw) dz=ab(e^(bw-aw)-1) /(b-a)

So then conditional density is

(b-a)e^(bz-az) e^(-bw)/(e^(bw-aw)-1)

Then just integrate z from 0 to infinity to get
e^(-bw)/(1-e^(bw-aw))

Is this okay?

No, it is not OK. Given ##X+Y = w##, ##X## has range ##[0,w]##; in your notation, ##0 \leq (Z|W=w) \leq w##. Therefore, integrating out to ##\infty## is wrong. Also, your "conditional density" ##f(z|w)## for ##(Z|W=w)## looks incorrect a bit. Go back to square one and proceed very carefully. The correct final answer is more complicated than yours.
 
Thanks. Let me try once more.

The joint density is
##abe^{-ax}e^{-by}##
Then making the substitution ##X=Z## and ##Y=W-Z##.
##\rho_{Z.W}=abe^{-az}e^{-bw+bz}##
##\rho_{Z,W}=abe^{(b-a)z}e^{-bw}##

Thus the marginal density is
##\rho_W=\int_0^w abe^{(b-a)z}e^{-bw} dz##
##\rho_W=abe^{-bw} \int_0^w e^{(b-a)z} dz##
##rho_W=abe^{-bw} \frac{1}{b-a} (e^{(b-a)w}-1)##

And the conditional density is
##\rho_{Z|W}=abe^{(b-a)z}e^{-bw}\frac{1}{abe^{-bw} \frac{1}{b-a} (e^{(b-a)w}-1)}##
##\rho_{Z|W}=e^{(b-a)z}\frac{1}{\frac{1}{b-a} (e^{(b-a)w}-1)}##
##\rho_{Z|W}=e^{(b-a)z}\frac{b-a}{(e^{(b-a)w}-1)}##

Then integrate from ##0## to ##w##

##\mathbb{E}(Z|W)=\int_0^w z e^{(b-a)z}\frac{b-a}{(e^{(b-a)w}-1)} dz##
##\mathbb{E}(Z|W)=\frac{b-a}{(e^{(b-a)w}-1)} \int_0^w z e^{(b-a)z} dz##
##\mathbb{E}(Z|W)=\frac{b-a}{(e^{(b-a)w}-1)} \frac{e^{(b-a)w}((b-a)w-1)+1}{(b-a)^2}##

Is this okay? Thanks for your help.
 
obst12 said:
Thanks. Let me try once more.

The joint density is
##abe^{-ax}e^{-by}##
Then making the substitution ##X=Z## and ##Y=W-Z##.
##\rho_{Z.W}=abe^{-az}e^{-bw+bz}##
##\rho_{Z,W}=abe^{(b-a)z}e^{-bw}##

Thus the marginal density is
##\rho_W=\int_0^w abe^{(b-a)z}e^{-bw} dz##
##\rho_W=abe^{-bw} \int_0^w e^{(b-a)z} dz##
##rho_W=abe^{-bw} \frac{1}{b-a} (e^{(b-a)w}-1)##

And the conditional density is
##\rho_{Z|W}=abe^{(b-a)z}e^{-bw}\frac{1}{abe^{-bw} \frac{1}{b-a} (e^{(b-a)w}-1)}##
##\rho_{Z|W}=e^{(b-a)z}\frac{1}{\frac{1}{b-a} (e^{(b-a)w}-1)}##
##\rho_{Z|W}=e^{(b-a)z}\frac{b-a}{(e^{(b-a)w}-1)}##

Then integrate from ##0## to ##w##

##\mathbb{E}(Z|W)=\int_0^w z e^{(b-a)z}\frac{b-a}{(e^{(b-a)w}-1)} dz##
##\mathbb{E}(Z|W)=\frac{b-a}{(e^{(b-a)w}-1)} \int_0^w z e^{(b-a)z} dz##
##\mathbb{E}(Z|W)=\frac{b-a}{(e^{(b-a)w}-1)} \frac{e^{(b-a)w}((b-a)w-1)+1}{(b-a)^2}##

Is this okay? Thanks for your help.

Yes, it's OK, but it should be simplified a bit. You can make it look nicer by writing
E(X|X+Y=w) = \frac{e^{cw}(cw-1)+1}{c(e^{cw}-1)}, \: c = b-a
 
Awesome, thanks for all your help!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top