Calculate freezing point depression and boiling point elevation

AI Thread Summary
The discussion focuses on calculating the freezing point depression and boiling point elevation for a solution containing 0.47 mol of ethylene glycol and 0.14 mol of KBr in 150g of water. The molality was initially calculated incorrectly, as the dissociation of KBr into ions was not properly accounted for, leading to confusion regarding the number of solute particles. The correct approach involves summing the moles of all entities, recognizing that ethylene glycol does not dissociate while KBr does. After recalculating, the new freezing point was determined to be -22.9°C and the new boiling point 106.3°C, although there were concerns about significant figures and rounding errors in the final answers. The participant ultimately resolved their calculations with assistance from others in the thread.
flemonster
Messages
11
Reaction score
0

Homework Statement



Calculate new freezing point and boiling point when 0.47 mol ethylene glycol and 0.14 mol KBr is added to 150g H2O. Express your answer using one decimal place.

Homework Equations



molality = moles solute/kg solvent
ΔTf=i*Kf*m
ΔTb=i*Kb*m
New bp = ΔTb + normal bp
New fp = normal fp -ΔTf

ΔTf = change in freezing point
ΔTb = change in boiling point
m = molality of solution
Kb = boiling point constant
Kf = freezing point constant
i = number of solute particles

The Attempt at a Solution



Molality of solution = (0.14 mol KBr +0.47 mol ethylene glycol)/(0.150 kg H2O) = 4.1 m

Kf H2O = 1.86°C/m (from table provided in the problem)

i = 3 (ethylene glycol is a covalently bonded molecule but potassium bromide dissociates into its constituent ions)

ΔTf = 3*1.86*4.1 = 22.9

New fp = 0 - 22.9 = -22.9°C

Kb H2O = 0.51°C/m (from table provided in the problem)

ΔTb = 3*0.51*4.1 = 6.3

New bp = 100 + 6.3 = 106.3°C

EDIT: I put the bp into mastering chemistry and it told me that I might have used the wrong number of sig figs or have committed a rounding error. I have no idea what I am doing wrong because I have checked and double checked the calculations. I also put in 106.2 into the answer box and it said the same thing about rounding and sig figs. I'm hesitant to try the fp as I have already been marked down. Any help?
 
Last edited:
Physics news on Phys.org
Sorry for a late answer, somehow I missed your question on the original date.

flemonster said:
Molality of solution = (0.14 mol KBr +0.47 mol ethylene glycol)/(0.150 kg H2O) = 4.1 m

i = 3 (ethylene glycol is a covalently bonded molecule but potassium bromide dissociates into its constituent ions)

ΔTf = 3*1.86*4.1 = 22.9

It doesn't work this way. What you did suggests ethylene glycol is dissociated into three ions.

Think about it this way - you need to calculate molality of ALL entities (ions, molecules) present in the solution. You put 0.47 moles of ethylene glycol into solution - it doesn't dissociate any longer. You put 0.14 moles of KBr into solution - it is equivalent to putting 0.14 moles of K+ and 0.14 moles of Br-. Can you sum all these numbers of moles now and use it for molality calculations?
 
Borek said:
Sorry for a late answer, somehow I missed your question on the original date.





It doesn't work this way. What you did suggests ethylene glycol is dissociated into three ions.

Think about it this way - you need to calculate molality of ALL entities (ions, molecules) present in the solution. You put 0.47 moles of ethylene glycol into solution - it doesn't dissociate any longer. You put 0.14 moles of KBr into solution - it is equivalent to putting 0.14 moles of K+ and 0.14 moles of Br-. Can you sum all these numbers of moles now and use it for molality calculations?

Hey Borek,

I got it figured out later but thanks anyways for the help. A late response is better than none at all!
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...

Similar threads

Back
Top