Calculate Limit of Sequence: n -> ∞

  • Thread starter Thread starter aid
  • Start date Start date
  • Tags Tags
    Limit Sequence
aid
Messages
15
Reaction score
0

Homework Statement


Calculate the limit of a given sequence for n \rightarrow \infty:

\frac{1 - 2 + 3 - ... + (2n - 1) - 2n}{\sqrt{n^2 + 1}}

The Attempt at a Solution


The correct answer seems to be -1. I've tried to apply the Stolz theorem but failed to compute \sqrt{(n + 1)^2 + 1} - \sqrt{n^2 + 1}. Will be grateful for any hints.
 
Last edited:
Physics news on Phys.org
Simplify the numerator and see if you can incorporate it somehow into the a square root. You should not need to use Stolz's theorem.
 
I agree with Tedjn.
No need of Stolz's theorem.
Just try to write the numerator in a compact expression.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top