Calculate Max Resistance for 2 Parallel Wires

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum resistance for two parallel wires using the formula for total resistance in parallel circuits, specifically ##\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}##. The user defined the lengths of the wires as ##L_1=x## and ##L_2=1000-x##, leading to the derivative calculation to find the maximum resistance. The conclusion reached was that both wires should be equal in length at ##500m## to achieve maximum resistance. The discussion emphasizes verifying whether the solution represents a maximum rather than a minimum resistance.

PREREQUISITES
  • Understanding of electrical resistance and Ohm's Law
  • Familiarity with calculus, specifically derivatives
  • Knowledge of parallel resistor formulas
  • Basic concepts of optimization in mathematics
NEXT STEPS
  • Study the derivation of resistance formulas for parallel circuits
  • Learn about optimization techniques in calculus
  • Explore practical applications of resistance calculations in electrical engineering
  • Investigate the implications of material properties on resistance
USEFUL FOR

Electrical engineers, physics students, and anyone involved in circuit design or analysis will benefit from this discussion, particularly those focusing on optimizing resistance in parallel circuits.

Lambda96
Messages
233
Reaction score
77
Homework Statement
How must the lengths ##L_1## and ##L2## be distributed so that the resistance between the points ##X## and ##Y## becomes maximum
Relevant Equations
none
Hi,

I am not sure if I have calculated the task here correctly:

Bildschirmfoto 2023-05-11 um 20.47.35.png

Based on the drawing, I now assumed that the two resistors are connected in parallel. The total resistance can then be calculated as follows ##\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}##.

Since the two wires are made of the same material, I only considered their length in the calculation. Then I specified the following ##L_1=x## and ##L_2=1000-x## and substituted into the equation above ##\frac{1}{x}+\frac{1}{1000-x}##

Since the resistance is supposed to be maximum, I calculated the derivative of the above expression and then set it to zero.

$$\frac{1}{(1000-x)^2}-\frac{1}{x^2}=0$$

After that, I simply solved the equation for x and got for ##x=500m## which gives me the following for the lengths ##L_1=500m## and ##L_2=500m##.
 
Physics news on Phys.org
Looks fine, but you should verify you found a maximum rather than a minimum.
 
  • Like
Likes Lambda96 and erobz
Lambda96 said:
Then I specified the following ##L_1=x## and ##L_2=1000-x## and substituted into the equation above ##\frac{1}{x}+\frac{1}{1000-x}##
I think you have treated the above expression as the total resistance. But it is not - it is the inverse of the total resistance.

Also, a good way of checking answers (when practical) is to compare the answer against extreme cases. E.g. what resistance would you expect if ##L_1=L_2##? What resistance would you expect if ##L_1= 1000m## and ##L_2=0##?
 
Steve4Physics said:
I think you have treated the above expression as the total resistance. But it is not - it is the inverse of the total resistance.
Of course, since ##f(x) = \frac{1}{x}## is strictly monotone decreasing (barring the boundary where ##x = 0##), searching for an extremum on ##\frac{1}{x}## is largely equivalent to searching for an extremum on ##x##.
 
jbriggs444 said:
Of course, since ##f(x) = \frac{1}{x}## is strictly monotone decreasing (barring the boundary where ##x = 0##), searching for an extremum on ##\frac{1}{x}## is largely equivalent to searching for an extremum on ##x##.
Yes. Finding the extremum of ##\frac 1{R_T}## (which is a minmum here) is equivalent to finding the maximum of ##R_T##.

But it's not clear (to me anyway) if that's what the OP has intentionally done!
 
  • Like
Likes Lambda96 and erobz
Isn't it easier to find an expression for the equivalent resistance and just look at it?
$$\frac{1}{R_{eq}}=\kappa\left(\frac{1}{L-x}+\frac{1}{x}\right)=\frac{\kappa~L}{x(L-x)}\implies R_{eq}=\frac{1}{\kappa}x(L-x).$$ This is equivalent to the problem of having a string of length ##L## and being asked to find the rectangle of perimeter ##L## that has maximum area. The answer is a rectangle of equal sides because for every rectangle of base ##b## and height ##h## there is another rectangle of base ##h## and height ##b## that has equal area. Thus, any ##b\neq h## is not unique and cannot be an extremum. Only ##b=h## gives a unique area and hence an extremum. It is a maximum because when either one of the sides goes to zero, the area goes to zero.
 
Last edited:
  • Like
Likes Lambda96 and nasu
vela said:
Looks fine, but you should verify you found a maximum rather than a minimum.
If you are referring to the expression that OP is optimizing, it better have a minimum because it is the inverse of the equivalent resistance.
 
Thank you vela, Steve4Physics, jbriggs444 and kuruman, for your help and for checking my calculation👍👍👍👍
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
3K
Replies
2
Views
2K
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K