# Electric current and resistance question

Elisapan622
Homework Statement:
problem solving

You build a wire by combining an 8 inches copper wire with a 10 inches nichrome wire. If their combine resistance is 10 kΩ, find the cross section area of both wires. The nichrome wire has twice the area of the copper wire.
Relevant Equations:
I = V/R

R=\rho \times \frac{l}{A}
R is the resistance in ohms (Ω).

ρ is the resistivity in ohms-meter (Ω×m)

l is the length of the conductor in meter (m)

A is the cross sectional area of the conductor in square meters (m2)

R2 = R1 × ( 1 + α(T2 - T1) )

R2 is the resistance at temperature T2 in ohms (Ω).

R1 is the resistance at temperature T1 in ohms (Ω).

α is the temperature coefficient.
Homework Statement:: problem solving

You build a wire by combining an 8 inches copper wire with a 10 inches nichrome wire. If their combine resistance is 10 kΩ, find the cross section area of both wires. The nichrome wire has twice the area of the copper wire.
Homework Equations:: I = V/R

R=\rho \times \frac{l}{A}
R is the resistance in ohms (Ω).

ρ is the resistivity in ohms-meter (Ω×m)

l is the length of the conductor in meter (m)

A is the cross sectional area of the conductor in square meters (m2)

R2 = R1 × ( 1 + α(T2 - T1) )

R2 is the resistance at temperature T2 in ohms (Ω).

R1 is the resistance at temperature T1 in ohms (Ω).

α is the temperature coefficient.

Resistance of nichrome is 150 x 10^-8
Resistance of copper is 1.7 x 10^-8
Problem : You build a wire by combining an 8 inches copper wire with a 10 inches nichrome wire. If their combine resistance is 10 kΩ, find the cross section area of both wires. The nichrome wire has twice the area of the copper wire.

Formulas
I = V/R

R=\rho \times \frac{l}{A}
R is the resistance in ohms (Ω).

ρ is the resistivity in ohms-meter (Ω×m)

l is the length of the conductor in meter (m)

A is the cross sectional area of the conductor in square meters (m2)

R2 = R1 × ( 1 + α(T2 - T1) )

R2 is the resistance at temperature T2 in ohms (Ω).

R1 is the resistance at temperature T1 in ohms (Ω).

α is the temperature coefficient.

• 