matematikuvol
- 190
- 0
Homework Statement
Pade approximation
[N/D]=\frac{a_0+a_1x+...+a_Nx^N}{1+b_1x+...+b_Dx^D}
With this approximation we approximate Maclaurin series
f(x)=\sum^{\infty}_{i=0}c_ix^i=[N/D]+O(x^{N+D+1})
How to calculate [1/1] for f(x)=1-\frac{1}{2}x+\frac{1}{3}x^2-... ?
Homework Equations
[N/D]=\frac{a_0+a_1x+...+a_Nx^N}{1+b_1x+...+b_Dx^D}
\sum^{\infty}_{i=0}c_ix^i=[N/D]+O(x^{N+D+1})
The Attempt at a Solution
(1+b_1x)(1-\frac{1}{2}x)=a_0+a_1x
a_0=1
b_1-\frac{1}{2}=a_1
How to calculate a_1,b_1
In solution
[1/1]=\frac{1+\frac{1}{6}x}{1+\frac{2}{3}x}