blob84
- 25
- 0
Hello, I want to calculate the sum of this series:
\sum_{n=1}^\infty \frac{3^n+1}{4^n+2},
I know the series converges, I only found this useful way to factor the denominator:
4^n+2=2^{2n}+2=4^n(1+2^{-2n+1}),
now i have: \frac{3^n+1}{4^n+2}=(\frac{3^n}{4^n}+\frac{1}{4^n})(\frac{1}{1+2^{-2n+1}}),
i can calculate \sum_{n=1}^\infty \frac{3^n}{4^n}+ \sum_{n=1}^\infty \frac{1}{4^n}but what should be done with
\frac{1}{1+2^{-2n+1}}?
\sum_{n=1}^\infty \frac{3^n+1}{4^n+2},
I know the series converges, I only found this useful way to factor the denominator:
4^n+2=2^{2n}+2=4^n(1+2^{-2n+1}),
now i have: \frac{3^n+1}{4^n+2}=(\frac{3^n}{4^n}+\frac{1}{4^n})(\frac{1}{1+2^{-2n+1}}),
i can calculate \sum_{n=1}^\infty \frac{3^n}{4^n}+ \sum_{n=1}^\infty \frac{1}{4^n}but what should be done with
\frac{1}{1+2^{-2n+1}}?