Calculate the eigenvectors of a specific matrix

Dassinia
Messages
141
Reaction score
0
Hello,
I'm really having a problem to calculate the eigenvectors of a specific matrix, I'm used to do this but i don't know why I'm stuck at this one

Homework Statement



A=
2 1 0 1
0 3 -1 0
0 1 1 0
0 -1 0 3

λ1=2 multiplicity 3
λ2=3 multiplicity 1

A-2I=
0 1 0 1
0 1 -1 0
0 1 -1 0
0 -1 0 1

The eigenvectors are given
[-1 -1 -1 -1]
[0 1 2 0]
[1 0 0 0]

If I solve
(A-2I)xi=0
I have
x1=0
x2+x4=0
x2-x3=0
-x2+x4=0


I have to use this for differential equations, and my linear algebra course is far behind, I don't remember what I'm supposed to do when we get the first eigenvector =0, because when the multiplicity of the eigenvalue is > 0 we use the first one to find the following eigenvectors

Thanks!
 
Physics news on Phys.org
Dassinia said:
Hello,
I'm really having a problem to calculate the eigenvectors of a specific matrix, I'm used to do this but i don't know why I'm stuck at this one

Homework Statement



A=
2 1 0 1
0 3 -1 0
0 1 1 0
0 -1 0 3

λ1=2 multiplicity 3
λ2=3 multiplicity 1

A-2I=
0 1 0 1
0 1 -1 0
0 1 -1 0
0 -1 0 1

The eigenvectors are given
[-1 -1 -1 -1]
[0 1 2 0]
[1 0 0 0]

If I solve
(A-2I)xi=0
I have
x1=0
x2+x4=0
x2-x3=0
-x2+x4=0


I have to use this for differential equations, and my linear algebra course is far behind, I don't remember what I'm supposed to do when we get the first eigenvector =0, because when the multiplicity of the eigenvalue is > 0 we use the first one to find the following eigenvectors

Thanks!

There is a nonzero eigenvector corresponding to eigenvalue 2. Rethink your conclusion that solving that matrix gives you x1=0.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top