Calculate the Fourier transform of the susceptibility of an Oscillator

Click For Summary
The discussion focuses on the Fourier transform of the susceptibility of an oscillator, specifically the expression involving the sine function. The user applies the Fourier transformation formula and manipulates the integral using complex exponentials. They then utilize the identity involving the delta function to arrive at a solution. The final expression includes delta functions indicating resonance conditions. Overall, the transformation process and the resulting expression appear to be correct.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the Fourier transform of ##\frac{4 \pi d_0^2}{\hbar} \sin(\omega_0(t-t'))##
Relevant Equations
none
Hi,

I'm not sure if I have Fourier transformed the expression correctly

Bildschirmfoto 2024-12-03 um 14.56.35.png

For the Fourier transformation, I used the following formula ##\int_{-\infty}^{\infty} f(t) e^{i \omega t}dt##

$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \sin(\omega_0(t-t')) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \frac{1}{2i} \Bigl( e^{i \omega_0(t-t')} -e^{-i \omega_0(t-t')} \Bigr) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega_0+\omega)} -e^{i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega-\omega_0)} \Bigr) dt$$

To solve the integrals, I then applied the identity ##\int_{-\infty}^{\infty} e^{ik(x-x')} dk=2\pi \delta(x-x')## and obtained the following solution:

$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \delta(\omega_0 + \omega) -e^{i \omega_0t'} \delta(\omega - \omega_0) \Bigr)$$

Is that correct?
 
Physics news on Phys.org
Lambda96 said:
Homework Statement: Calculate the Fourier transform of ##\frac{4 \pi d_0^2}{\hbar} \sin(\omega_0(t-t'))##
Relevant Equations: none

Hi,

I'm not sure if I have Fourier transformed the expression correctly

View attachment 354068
For the Fourier transformation, I used the following formula ##\int_{-\infty}^{\infty} f(t) e^{i \omega t}dt##

$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \sin(\omega_0(t-t')) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \frac{1}{2i} \Bigl( e^{i \omega_0(t-t')} -e^{-i \omega_0(t-t')} \Bigr) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega_0+\omega)} -e^{i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega-\omega_0)} \Bigr) dt$$

To solve the integrals, I then applied the identity ##\int_{-\infty}^{\infty} e^{ik(x-x')} dk=2\pi \delta(x-x')## and obtained the following solution:

$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \delta(\omega_0 + \omega) -e^{i \omega_0t'} \delta(\omega - \omega_0) \Bigr)$$

Is that correct?
Looks fine to me.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K