Calculate the Fourier transform of the susceptibility of an Oscillator

Click For Summary
SUMMARY

The discussion focuses on calculating the Fourier transform of the susceptibility of an oscillator using the formula for Fourier transformation, specifically the integral ##\int_{-\infty}^{\infty} f(t) e^{i \omega t}dt##. The user applied this formula to the expression ##\frac{4 \pi d_0^2}{\hbar} \sin(\omega_0(t-t'))## and utilized the identity ##\int_{-\infty}^{\infty} e^{ik(x-x')} dk=2\pi \delta(x-x')## to arrive at the final solution. The resulting expression is ##\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \delta(\omega_0 + \omega) - e^{i \omega_0t'} \delta(\omega - \omega_0) \Bigr)##, which was confirmed as correct by another participant.

PREREQUISITES
  • Understanding of Fourier transforms and their applications in physics.
  • Familiarity with complex exponentials and delta functions.
  • Knowledge of oscillatory functions, specifically sine functions.
  • Basic calculus skills, particularly in evaluating improper integrals.
NEXT STEPS
  • Study the properties of the Fourier transform in quantum mechanics.
  • Learn about the application of delta functions in signal processing.
  • Explore advanced techniques for evaluating improper integrals.
  • Investigate the role of oscillators in physical systems and their mathematical modeling.
USEFUL FOR

Students and professionals in physics, particularly those studying quantum mechanics and signal processing, as well as mathematicians interested in Fourier analysis.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the Fourier transform of ##\frac{4 \pi d_0^2}{\hbar} \sin(\omega_0(t-t'))##
Relevant Equations
none
Hi,

I'm not sure if I have Fourier transformed the expression correctly

Bildschirmfoto 2024-12-03 um 14.56.35.png

For the Fourier transformation, I used the following formula ##\int_{-\infty}^{\infty} f(t) e^{i \omega t}dt##

$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \sin(\omega_0(t-t')) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \frac{1}{2i} \Bigl( e^{i \omega_0(t-t')} -e^{-i \omega_0(t-t')} \Bigr) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega_0+\omega)} -e^{i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega-\omega_0)} \Bigr) dt$$

To solve the integrals, I then applied the identity ##\int_{-\infty}^{\infty} e^{ik(x-x')} dk=2\pi \delta(x-x')## and obtained the following solution:

$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \delta(\omega_0 + \omega) -e^{i \omega_0t'} \delta(\omega - \omega_0) \Bigr)$$

Is that correct?
 
Physics news on Phys.org
Lambda96 said:
Homework Statement: Calculate the Fourier transform of ##\frac{4 \pi d_0^2}{\hbar} \sin(\omega_0(t-t'))##
Relevant Equations: none

Hi,

I'm not sure if I have Fourier transformed the expression correctly

View attachment 354068
For the Fourier transformation, I used the following formula ##\int_{-\infty}^{\infty} f(t) e^{i \omega t}dt##

$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \sin(\omega_0(t-t')) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar}\int_{-\infty}^{\infty} \frac{1}{2i} \Bigl( e^{i \omega_0(t-t')} -e^{-i \omega_0(t-t')} \Bigr) e^{i \omega t}dt$$
$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega_0+\omega)} -e^{i \omega_0t'} \int_{-\infty}^{\infty} e^{it(\omega-\omega_0)} \Bigr) dt$$

To solve the integrals, I then applied the identity ##\int_{-\infty}^{\infty} e^{ik(x-x')} dk=2\pi \delta(x-x')## and obtained the following solution:

$$\frac{4 \pi d_0^2}{\hbar} \frac{1}{2i} \Bigl(e^{-i \omega_0t'} \delta(\omega_0 + \omega) -e^{i \omega_0t'} \delta(\omega - \omega_0) \Bigr)$$

Is that correct?
Looks fine to me.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K