How to Calculate Latent Heat at a New Point on the Coexistence Curve?

  • Thread starter Thread starter fluidistic
  • Start date Start date
  • Tags Tags
    Heat Latent heat
fluidistic
Gold Member
Messages
3,928
Reaction score
272

Homework Statement


I'm stuck in the following problem: In a particular solid-liquid phase transition the point ##T_0##, ##P_0## lies on the coexistence curve. The latent heat of vaporization at this point is ##l_0##. A nearby point on the existence curve has pressure ##P_0+p## and temperature ##T_0+t##; the local slope of the coexistence curve in the P-T plane is p/t. Assuming ##v##, ##c_p##, ##\alpha## and ##\kappa _T## to be known in each phase in the vicinty of the states of interest, find the latent heat at the point ##P_0+p##, ##T_0+t##.


Homework Equations


##l=T_{\text{transition}}(s_{\text{liq.}}-s_{\text{sol.}})##. (1)
##c_p=\left ( \frac{\partial s}{\partial T} \right ) _P##
##\alpha = \frac{1}{v} \left ( \frac{\partial v}{\partial T} \right ) _P##
##\kappa _T =-\frac{1}{v} \left ( \frac{\partial v}{\partial P} \right )##

The Attempt at a Solution


So I want to use equation (1). My idea is to expression the entropies of the liquid and solid phase as functions of alpha, kappa, etc.
So I've thought of s as a function of P and T to start with. I then took the total differential of s to reach ##ds=-\alpha v dP+c_p dT##. I've tried to make appear ##\kappa _T## without any success.
That's basically where I've been stuck for the last days, almost a week now. My friend told me to make a Taylor's expansion for the latent heat, so I've written down ##l(T) \approx l(T_0)+ l'(T_0)(T-T_0)## though I don't think that's correct since the latent heat depends on both the temperature and entropy; not the temperature alone.
So I'm looking for getting the ##\Delta s##. I've ran out of ideas, any tip is welcome.
 
Physics news on Phys.org
Check out the derivation of the Clapeyron equation for vapor-liquid equilibrium. The derivation for going from solid to liquid should parallel this.
 
I've solved the problem via a Taylor's expansion, the derivation up to the solution is rather lengthy in latex. This differs quite a lot from the 2 derivations given in wikipedia of the Clausius-Clapeyron's relation.
So I'll write final answer that I got:
l(T_0+t)\approx l_0 + \frac{tl_0}{T_0}+t(c_P^{\text{liq}}-c_P^{\text{sol.}})-T_0p(\alpha ^{\text{liq.}}v ^{\text{liq.}}-\alpha ^{\text{sol.}}v ^{\text{sol.}})
. I've found no dependence on ##\kappa _T##.
 
fluidistic said:
I've solved the problem via a Taylor's expansion, the derivation up to the solution is rather lengthy in latex. This differs quite a lot from the 2 derivations given in wikipedia of the Clausius-Clapeyron's relation.
So I'll write final answer that I got:
l(T_0+t)\approx l_0 + \frac{tl_0}{T_0}+t(c_P^{\text{liq}}-c_P^{\text{sol.}})-T_0p(\alpha ^{\text{liq.}}v ^{\text{liq.}}-\alpha ^{\text{sol.}}v ^{\text{sol.}})
. I've found no dependence on ##\kappa _T##.

You're right. The Clapeyron equation is not the way to go. I've solved this problem starting with general equation for the differential change in enthalpy dH=C_pdT+V(1-Tα)dP in conjunction with the Clapeyron equation, and have confirmed your result. Very nice job.
 
  • Like
Likes 1 person
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top