Calculate Limit - Wolfram Alpha

  • Thread starter Thread starter puzzek
  • Start date Start date
puzzek
Messages
6
Reaction score
0
Calculate the limit of :

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP3119g718e25g367ahi000057f7afh4fdhed60b?MSPStoreType=image/gif&s=9&w=150&h=57

Thanks for the help.
 
Last edited by a moderator:
Physics news on Phys.org
Hi puzzek! :smile:

Can you rewrite this series to a Riemann sum. That is, rewrite it to the form

\sum_{k=1}^{+\infty}{f(\frac{k}{n})\frac{1}{n}}

for a function f. Wshy should you do this? Well, since you know that

\lim_{n\rightarrow +\infty}{\sum_{k=1}^{+\infty}{f(\frac{k}{n})\frac{1}{n}}}=\int_0^1{f(x)dx}
 
micromass Thank you!

your tip made it a lot easier !
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
2
Views
1K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
14
Views
2K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Back
Top