Calculate the Sum of Series: \sum_{n=1}^{\infty}n(n+1)x^n for Homework

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Series Sum
azatkgz
Messages
182
Reaction score
0

Homework Statement


Find the sum of the following series

\sum_{n=1}^{\infty}n(n+1)x^n


The Attempt at a Solution




x\sum_{n=1}^{\infty}n(n+1)x^{n-1}

x\int_{0}^{x}(\int_{0}^{x}f(t)dt)dt=x(x^2+x^3+x^4+x^5+\cdots)=x\frac{x^2}{1-x}


x\frac{d^2}{dx^2}\frac{x^2}{1-x}=\frac{2x}{1-x}
 
Physics news on Phys.org
I am not really sure of how to do this but looking at your last line, I think you messed up taking the second derivative of x^2/(1-x) since you need to use the quotient rule, the (1-x) should be squared on each derivative
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top