Finding Laurent Series for a Rational Function on an Annulus

QuantumLuck
Messages
19
Reaction score
0

Homework Statement


find the Laurent series for f(z) = 1/(z(z-1)(z-2)) on the annulus between 1 and 2. with the origin as center.


Homework Equations





The Attempt at a Solution


so i found the partial fraction decomposition of this function and it turns out to be f(z) = 1/2z + -1/(z-1) + 1/(2(z-2)). In order to find the Laurent series do I just Taylor expand each of my 3 different decomposition around their singularities? However, their singularities are not contained on the annulus so this doesn't seem to make much sense. I am unsure how to proceed from this spot.
 
Physics news on Phys.org
Note that 1/2z and -1/(z-1) have their singularity "inside" the annulus, while 1/(2(z-2)) has a singularity "outside" the annulus. Try expressing the first two as series in 1/z and the third one as a series in z (i.e. Taylor series).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top