Calculating Amplitude of a Harmonic Motion System with Added Mass

AI Thread Summary
The problem involves a 4.00 kg mass attached to a spring with a force constant of 100 N/m, oscillating with an initial amplitude of 2.00 m. When a 6.00 kg object is dropped onto it at the equilibrium point, the system's total mass increases to 10.00 kg. The angular frequency changes from 5 s^-1 to 3.16 s^-1 after the collision. The new amplitude is calculated to be 2.00 m, which seems incorrect as it does not account for the added mass. The correct approach involves applying conservation of momentum during the collision to determine the new amplitude.
Zynoakib
Messages
70
Reaction score
0

Homework Statement


A particle of mass 4.00 kg is attached to a
spring with a force constant of 100 N/m. It is oscillating
on a frictionless, horizontal surface with an amplitude
of 2.00 m. A 6.00-kg object is dropped vertically on top
of the 4.00-kg object as it passes through its equilibrium
point. The two objects stick together. What
is the new amplitude of the vibrating system after the
collision?

Homework Equations

The Attempt at a Solution


Angular frequency before impact adding the block = (100/ 4)^1/2 = 5 s^-1

Angular frequency after impact adding the block = (100/ 10)^1/2 = 3.16 s^-1

Max acceleration before adding the block = Angular frequency^2 x amplitude = 25 x 2 = 50 ms^-2

Force of max acceleration = 50 x 4 = 200N

After addition of the block, the max acceleration will be 200N/ (6 + 4) = 20 ms^-2

Max acceleration after adding the block = Angular frequency^2 x amplitude
20 = 3.16^2 x amplitude
amplitude = 2

I know it is wrong but what is wrong, other than the fact my answer is exactly the same as the old amplitude.
 
Physics news on Phys.org
Did you do anything with the 'collision' when adding the 6 kg object ?
 
  • Like
Likes Zynoakib
thanks. I have got the answer!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top