Gatts
- 5
- 0
Inverse Fourier Transform
I have to calculate (don't take in account the units, obviously the're extrange)
<br /> \phi (r)=\frac{1}{(2\pi\hbar)^{3/2}}\int d^{3}p\hspace{7mm}{e^{i\frac{-p\cdot r}{\hbar}}\Psi(p)}
<br /> \Psi(p)=\frac{B}{(1+\frac{p^2}{m^2})^2}<br />
I know that
<br /> d^{3}p=p^{2}Sin(\theta)dpd\theta d\phi
So i do
<br /> \phi (r)=\frac{1}{(2\pi\hbar)^{3/2}} \int p^{2}Sin(\theta)dpd\theta d\phi\hspace{7mm}{e^{i\frac{-p\cdot r Cos(\theta)}{\hbar}}\frac{B}{(1+\frac{p^2}{m^2})^2}<br /> }
but i use the change of variables
<br /> u=Cos(\theta);du=-Sin(\theta)d\theta
And the the integral take the form
<br /> \phi (r)=\frac{2\pi}{(2\pi\hbar)^{3/2}} \int_{1}^{-1}\int_{0}^{\infty}p^{2}dpdu \hspace{7mm}{e^{i\frac{-p\cdot r u}{\hbar}}\frac{B}{(1+\frac{p^2}{m^2})^2}<br /> }
I have to calculate (don't take in account the units, obviously the're extrange)
<br /> \phi (r)=\frac{1}{(2\pi\hbar)^{3/2}}\int d^{3}p\hspace{7mm}{e^{i\frac{-p\cdot r}{\hbar}}\Psi(p)}
<br /> \Psi(p)=\frac{B}{(1+\frac{p^2}{m^2})^2}<br />
I know that
<br /> d^{3}p=p^{2}Sin(\theta)dpd\theta d\phi
So i do
<br /> \phi (r)=\frac{1}{(2\pi\hbar)^{3/2}} \int p^{2}Sin(\theta)dpd\theta d\phi\hspace{7mm}{e^{i\frac{-p\cdot r Cos(\theta)}{\hbar}}\frac{B}{(1+\frac{p^2}{m^2})^2}<br /> }
but i use the change of variables
<br /> u=Cos(\theta);du=-Sin(\theta)d\theta
And the the integral take the form
<br /> \phi (r)=\frac{2\pi}{(2\pi\hbar)^{3/2}} \int_{1}^{-1}\int_{0}^{\infty}p^{2}dpdu \hspace{7mm}{e^{i\frac{-p\cdot r u}{\hbar}}\frac{B}{(1+\frac{p^2}{m^2})^2}<br /> }
Last edited: