How do I calculate the bending energy for a cross-linked beam network?

  • Thread starter Thread starter jjyoung
  • Start date Start date
  • Tags Tags
    Bending Energy
AI Thread Summary
To calculate the bending energy for a cross-linked beam network, it's essential to determine the bending moment using the formula M = EI * (u''), where u'' is the second derivative of deflection. The force at the cross-links, which affects the angle between beams, can be calculated by considering the difference in angle multiplied by a spring constant. Boundary conditions for the Bernoulli equation must account for the 3D nature of the network, requiring six conditions per node and twelve for each beam. A finite element analysis program is recommended to accurately obtain the translational and rotational displacements necessary for these boundary conditions. Properly addressing these calculations will enable the accurate computation of the network's total energy.
jjyoung
Messages
2
Reaction score
0
Hello, I'm working on a project involving a cross-linked network of beam-like objects. We take these networks and apply extensional and shear strains to it, then apply an energy minimization procedure to find the optimal positions for all the cross-links in the new state. Therefore I have to calculate the total energy of the system. Right now, my computation includes only extensional/compression energy so kx^2/2, but I need to add bending energy. And I'm stuck here. I know my beams are supposed to be Bernoulli beams. The bending energy (as I understand it) is the bending moment:
M = EI *(u'') (second derivative of the deflection). In order to compure this I need the defection. To get this, I need to solve the Bernoulli equation:
EI*(u'''') = w where u'''' is the fourth order deriv of deflection and w is the force.
I'm not sure what my "force" should be. Basically at a crosslink, the two beams are attached together at a certain angle. If after the whole network has moved, this angle has changed between the two beams, then a force has been imposed there because the beams are no longer at their optimal angle.

So: 1. How do I calculate this force? is it just as simple as the difference in the angle times a spring constant? or something like this

2. Once I have the force, I have to solve the Bernoulli equation to get the deflection, so being a fourth order equation I need four boundary conditions. 2 at each end of the beam, so in this situation these wouldn't be "clamped" right? Because technically they can move, even though its not very energetically favorable for them to do so. If it's not clamped, then any suggestions on what the boundary conditions should be in this situation? Because the ends are certainly not free either...

Any suggestions would be most helpful. If this is the incorrect section to post this under, I apologize!
 
Engineering news on Phys.org
jjyoung: Is your beam network coplanar, with all displacements coplanar? Or is this a 3-D network? The transverse applied load w on each beam is zero. The end boundary conditions (BCs) of each beam depend on the response of the entire network. Therefore, you will need to run a finite element analysis program to obtain the translational and rotational displacements of each node. Then you will have the end BCs for each beam.
 
It is a 3D calculation. So these beams can translate and rotate in 3D.

So you are saying my Bernoulli equation should be EI*u'''' = 0, and I should be able to get boundary conditions like u and u' for the two ends of each beam, which will give me the four conditions to solve for u

thank you for the advice!
 
Yes, but there will be six boundary conditions per node, twelve for each beam.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...

Similar threads

Back
Top