Calculating del(1/r) with Separation Vectors: How to Prove the Equation?

  • Thread starter Thread starter boardbox
  • Start date Start date
boardbox
Messages
16
Reaction score
0

Homework Statement


let R be the separation vector from (a,b,c) to (x,y,z) and r be the magnitude of R.
Show that: del(1/r) = -R/r^2

Homework Equations


del is the gradient operator

The Attempt at a Solution


The problem is that I keep getting a 3/2 power in the denominator when I calculate the left hand side.

r = sqrt((x-a)^2 + (y-b)^2 + (z-c)^2)

1/r = ((x-a)^2 + (y-b)^2 + (z-c)^2)^-0.5

del(1/r) = -R/[(x-a)^2 + (y-b)^2 + (z-c)^2]^(3/2)
 
Last edited:
Physics news on Phys.org
I see, you're right. I missed the hat on R in my text. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top