kasse
- 383
- 1
Homework Statement
We study a one dimensional metal with length L at 0 K, and ignore the electron spin. Assume that the electrons do not interact with each other. The electron states are given by
\psi(x) = \frac{1}{\sqrt{L}}exp(ikx), \psi(x) = \psi(x + L)
What is the density of states at the Fermi level for this metal?
The Attempt at a Solution
The total energy of the system is E = \frac{\hbar^{2}\pi^{2}n^{2}}{2mL^{2}} where n is the square of the sums of the three quantum numbers that determine each quantum state.
At a certain energy all states up to E_{F}(0)=E_{0}n^{2}_{F} is filled.
Last edited: