Calculating Double Sum: (n=3)(i=0)∑(n=2)(j=0)∑(3i+2j)

  • Thread starter Thread starter sapiental
  • Start date Start date
  • Tags Tags
    Sum
sapiental
Messages
110
Reaction score
0

Homework Statement



Compute the following double sum

(n=3)(i=0)\sum(n=2)(j=0)\sum(3i+2j)

Homework Equations



sums

The Attempt at a Solution



my answer follows expanding the first sum, then just doing the last one

i get

(n=3)(i=0)\sum(6+9i) = 78<br /> <br /> thanks!
 
Physics news on Phys.org
\sum_{i=0}^{n=3} \sum_{j=0}^{n=2}(3i+2j)=\sum_{i=0}^{n=3}(6+9i)=78

Looks good to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top