Calculating Electric Field at the Center of a Hemispherical Shell of Charge

AI Thread Summary
To calculate the electric field at the center of a hemispherical shell of charge, the problem involves integrating using polar coordinates from 0 to π. The approach requires finding the charge density and considering the Coulomb force from an infinitesimal piece of the shell on a test charge at the origin. Gauss's law is not applicable due to the lack of symmetry in this configuration. An alternative method suggested involves calculating the field of a ring and summing contributions from washers to form the shell. The discussion emphasizes the importance of setting up the integral correctly and using spherical coordinates effectively.
swervin09
Messages
7
Reaction score
0

Homework Statement


A hollow sphere of outer radius R2 and inner radius of R1 carries a uniform charge 2Q. The sphere is then cut in half to create a hemispherical shell of charge Q. Calculate E at the center point (origin) P.


Homework Equations


equation of a hollow sphere = 2/3π(r2-r1)
Gauss' Law ∫E dot dA
surface area hemisphere = 2πr^2


The Attempt at a Solution


Well, I know this is an integration problem and that I am better off integrating with polar coordinates and that I will be integrating from 0-->π as my lower and upper integral bounds.
But in all honesty I haven't had much fortune setting the integral up. The set up is the help I am asking for.
 
Physics news on Phys.org
If I am not mistaken, you need to find the E field due to a HEMISPHERICAL shell

That involves some somewhat-complicated multiple integrals and E form Coulumb's law. Gauss's law will not work due to lack of symmetry
 
Assuming that that is your problem, here is my hint:

Use spherical coordinates. find the charge density. consider an infinitesimal piece of the shell and the Coulomb force on a test charge at the origin. Then choose appropriate limits for r, theta, and phi and integrate
 
Yes that is the problem. spherical coordinates make more sense. I will try that and post tomorrow what I have come up with. I don't have my calculus book nearby to refresh my memory of spherical coord. integration. This is one of those problems that has me intrigued and eager to "beat". It isn't worth a lot of points but it is due Thursday.
Thank you for the hint!
 
no problem!

I might add: depending on how comfortable you are with multivariable, you don't have to use a triple integral; just find the field of a ring, sum into a washer, sum the washers into a shell. The spherical coordinates are just a way of thinking, no need to get formal about it
 
I follow you up until you state sum the washers into a shell. Please provide a hint as to that specific.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top