Calculating Electric Potential and Energy in a System of Spherical Conductors

Click For Summary
SUMMARY

The discussion focuses on calculating electric potential and energy in a system of spherical conductors using Gauss's Law. The correct expression for the electric field is given by E_P=\frac{q_1+q_2+q_3}{4\pi\varepsilon_0 (R_3+d)^2}, while the potential difference is V_3-V_1=\frac{q_1}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_1}\right)+\frac{q_2}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_2}\right). The initial energy of the system is not simply the sum of individual energies due to the lack of superposition in electrostatics. The final charge distribution after connecting conductors C_1 and C_2 is determined by their equal potential condition.

PREREQUISITES
  • Understanding of Gauss's Law
  • Knowledge of electric potential and energy calculations
  • Familiarity with spherical conductors and their properties
  • Basic calculus for evaluating integrals
NEXT STEPS
  • Study the implications of Gauss's Law in electrostatics
  • Learn about the energy stored in electric fields
  • Explore the concept of electric potential in multi-conductor systems
  • Investigate the effects of connecting capacitors and charge redistribution
USEFUL FOR

Physics students, electrical engineers, and anyone involved in electrostatics and capacitor design will benefit from this discussion.

lorenz0
Messages
151
Reaction score
28
Homework Statement
Three spherical thin and hollow conductors ##C_1, C_2, C_3,## have radii respectively ##R_1, R_2, R_3.## A charge ##q_1## is put on ##C_1,## a charge ##q_2## is put on ##C_2,## and a charge ##q_3## on ##C_3.##
Find: (a) the electric field ##E## at a point ##P## at distance ##d## from ##R_3;## (b) The potential difference ##V_3 -V_1## between the conductors ##C_3## and ##C_1;## (c) Now, the conductors ##C_1## and ##C_2## are joined by a conducting cable. Find the variation in electrostatic energy energy ##\Delta U_e.##
Relevant Equations
##V_3-V_1=\int_{R_3}^{R_1}\vec{E}\cdot d\vec{l},\ U=\frac{1}{2}\int \sigma V da##
(a) Using Gauss's Law ##E_P=\frac{q_1+q_2+q_3}{4\pi\varepsilon_0(R_1+R_2+R_3+d)^2};(b) V_3-V_1=\int_{R_3}^{R_2}\frac{q_1+q_2}{4\pi\varepsilon_0 r^2}dr+\int_{R_2}^{R_1}\frac{q_1}{4\pi\varepsilon_0 r^2}dr=\frac{q_2}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_2}\right).##

(c) ##U_i=\frac{1}{8\pi\varepsilon_0} \left(\frac{q_1^2}{R_1}+\frac{q_2^2}{R_2}+\frac{q_3^2}{R_3}\right)## and when ##C_1## and ##C_2## are connected we have that ##q_{1f}+q_{2f}=Q##, where ##Q:=q_1+q_2## and ##V_1=V_2\Leftrightarrow \frac{q_1}{4\pi\varepsilon_0 R_1}=\frac{q_2}{4\pi\varepsilon_0 R_2}## which together imply that ##q_{1f}=\frac{R_1}{R_1+R_2}Q,\ q_{2f}=\frac{R_2}{R_1+R_2}Q## so ##U_f-U_i=\frac{1}{4\pi\varepsilon_0 R_1}\left(q_{1f}^2-q_1^2\right)+\frac{1}{4\pi\varepsilon_0 R_2}\left(q_{2f}^2-q_2^2\right)##
 

Attachments

  • spherical_shells.png
    spherical_shells.png
    23 KB · Views: 118
Last edited:
Physics news on Phys.org
lorenz0 said:
(a) Using Gauss's Law ##E_P=\frac{q_1+q_2+q_3}{4\pi\varepsilon_0(R_1+R_2+R_3+d)^2}##

You are not expressing the distance from the center of the system to the field point correctly.

lorenz0 said:
(b) ##V_3-V_1=\int_{R_3}^{R_2}\frac{q_1+q_2}{4\pi\varepsilon_0 r^2}dr+\int_{R_2}^{R_1}\frac{q_1}{4\pi\varepsilon_0 r^2}dr=\frac{q_2}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_2}\right).##

You have set this up correctly in terms of the integrals, but your result for the evaluation of the integrals is not correct.

lorenz0 said:
(c) ##U_i=\frac{1}{8\pi\varepsilon_0} \left(\frac{q_1^2}{R_1}+\frac{q_2^2}{R_2}+\frac{q_3^2}{R_3}\right)##
This is not the correct expression for the initial energy of the system. Energy does not obey a superposition principle.

##\frac{1}{8\pi\varepsilon_0} \frac{q_1^2}{R_1} ## is the energy associated with conductor ##C_1## if the other conductors are not present. Similarly for the other two conductors. But, when all three conductors are present, the total energy is not the sum of these individual energies.

lorenz0 said:
and when ##C_1## and ##C_2## are connected we have that ##q_{1f}+q_{2f}=Q##, where ##Q:=q_1+q_2## and ##V_1=V_2\Leftrightarrow \frac{q_1}{4\pi\varepsilon_0 R_1}=\frac{q_2}{4\pi\varepsilon_0 R_2}## which together imply that ##q_{1f}=\frac{R_1}{R_1+R_2}Q,\ q_{2f}=\frac{R_2}{R_1+R_2}Q##
When ##C_1## and ##C_2## are connected so that ##V_1=V_2##, can there be any electric field between ##C_1## and ##C_2##? What does this tell you about the final charge on ##C_1##?
 
  • Like
Likes   Reactions: lorenz0
TSny said:
You are not expressing the distance from the center of the system to the field point correctly.
You have set this up correctly in terms of the integrals, but your result for the evaluation of the integrals is not correct.This is not the correct expression for the initial energy of the system. Energy does not obey a superposition principle.

##\frac{1}{8\pi\varepsilon_0} \frac{q_1^2}{R_1} ## is the energy associated with conductor ##C_1## if the other conductors are not present. Similarly for the other two conductors. But, when all three conductors are present, the total energy is not the sum of these individual energies.When ##C_1## and ##C_2## are connected so that ##V_1=V_2##, can there be any electric field between ##C_1## and ##C_2##? What does this tell you about the final charge on ##C_1##?
Thanks!
For part (a) it should have been ##E_P=\frac{q_1+q_2+q_3}{4\pi\varepsilon_0 (R_3+d)^2}##.
For part (b) it should have been ##V_3-V_1=\frac{q_1}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_1}\right)+\frac{q_2}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_2}\right).##

For part (c) since ##C_1## and ##C_2## have the same potential the electric field between them has magnitude 0, so I was thinking that maybe the difference in energy relative to the initial situation is the one that was stored in the electric field between them, which should be ##\frac{\varepsilon_0}{2}\int_{R_1}^{R_2}E^2 dV##. This approach would also have the additional benefit of not having to compute the initial and final energy, but does it make sense?
 
Last edited:
For part (c) I think the problem is asking you to find the electrostatic energy before and after the connection is make and take the difference After - Before. By the way, there is a factor of ##\frac{1}{2}## missing in front of the integral ##\varepsilon_0\int_{R_1}^{R_2}E^2 dV.##
 
  • Like
Likes   Reactions: lorenz0
lorenz0 said:
For part (a) it should have been ##E_P=\frac{q_1+q_2+q_3}{4\pi\varepsilon_0 (R_3+d)^2}##.
Yes

lorenz0 said:
For part (b) it should have been ##V_3-V_1=\frac{q_1}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_1}\right)+\frac{q_2}{4\pi\varepsilon_0}\left(\frac{1}{R_3}-\frac{1}{R_2}\right).##
Yes

lorenz0 said:
For part (c) since ##C_1## and ##C_2## have the same potential the electric field between them has magnitude 0, so I was thinking that maybe the difference in energy relative to the initial situation is the one that was stored in the electric field between them
Sounds good.

lorenz0 said:
, which should be ##\varepsilon_0\int_{R_1}^{R_2}E^2 dV##.
There's a numerical factor missing here. [Edit: @kuruman already noted this.]

lorenz0 said:
This approach would also have the additional benefit of not having to compute the initial and final energy, but does it make sense?
Yes, it does. Good.
 
  • Like
Likes   Reactions: lorenz0

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
640
  • · Replies 11 ·
Replies
11
Views
3K