- 5,197
- 38
Consider the electromagnetic field in a linear medium with material properties \epsilon \ \ \text{and} \ \ \mu. Calculate \nabla \cdot \mathbf{S} for the energy flux \mathbf{S = E \times H}.
My work:
\nabla \cdot \mathbf{S} = \nabla \cdot \frac{1}{\mu}(\mathbf{E \times B })
= \frac{1}{\mu}[ \nabla \cdot(\mathbf{E \times B })]
= \frac{1}{\mu}[\mathbf{B} \cdot(\nabla \times \mathbf{E} }) - \mathbf{E} \cdot(\nabla \times \mathbf{B} }) ]
= \frac{1}{\mu}[\mathbf{B} \cdot(-\frac{\partial \mathbf{B}}{ \partial t}) - \mathbf{E} \cdot(\mu\epsilon\frac{\partial \mathbf{E}}{ \partial t})]
I guess my question is: is this the result? I have no idea what this problem wants. Are there at least any more immediately obvious simplifications?
My work:
\nabla \cdot \mathbf{S} = \nabla \cdot \frac{1}{\mu}(\mathbf{E \times B })
= \frac{1}{\mu}[ \nabla \cdot(\mathbf{E \times B })]
= \frac{1}{\mu}[\mathbf{B} \cdot(\nabla \times \mathbf{E} }) - \mathbf{E} \cdot(\nabla \times \mathbf{B} }) ]
= \frac{1}{\mu}[\mathbf{B} \cdot(-\frac{\partial \mathbf{B}}{ \partial t}) - \mathbf{E} \cdot(\mu\epsilon\frac{\partial \mathbf{E}}{ \partial t})]
I guess my question is: is this the result? I have no idea what this problem wants. Are there at least any more immediately obvious simplifications?