Calculating Field Strength in a Plate Capacitor

Click For Summary
SUMMARY

The discussion focuses on calculating the electric field strength in a plate capacitor with two dielectric layers of thickness 1 mm and 2 mm, and relative permittivities of 4 and 6, respectively, under a voltage of 5000V. The relevant equations include the capacitance formula for parallel plate capacitors, \(C = \epsilon \epsilon_0 \frac{A}{d}\), and the relationship between voltage, electric field, and distance, \(E = \frac{V}{d}\). The final calculated electric field strength in the thinnest layer is approximately \(2.86 \times 10^6 \, \text{V/m}\).

PREREQUISITES
  • Understanding of electric field concepts and formulas.
  • Familiarity with the capacitance of parallel plate capacitors.
  • Knowledge of dielectric materials and their relative permittivity.
  • Basic algebra for manipulating equations and solving for unknowns.
NEXT STEPS
  • Study the principles of electric fields and their calculations in capacitors.
  • Learn about the properties and applications of dielectric materials in capacitors.
  • Explore the concept of voltage dividers in electrical circuits.
  • Investigate the relationship between charge density, permittivity, and electric field strength.
USEFUL FOR

Students studying electrical engineering, physics enthusiasts, and anyone involved in capacitor design and analysis.

Mutaja
Messages
239
Reaction score
0

Homework Statement



The insulation in a plate capacitor consists of two layers with the thickness of 1 and 2 mm, and a relative permittivity of 4 and 6. Calculate the field strength in the thinnest layer when the capacitor is connected to a voltage of 5000v.

Homework Equations





The Attempt at a Solution



I know that the answer should be in voltage per meter, and I find the following equation to be relevant:

E = \frac{F}{Q} = \frac{k*Q}{r^2}
where k is a constant.

My problem is the numbers I'm given. Charge density divided by permittivity equals field strength? I don't know what charge density even is (a formula I found while google'ing the problem).

Can anyone guide me as to where I should begin solving this problem?

Appreciate any input.

- Mutaja.
 
Physics news on Phys.org
A capacitor with multiple layers of dielectrics can be modeled as a series of capacitors, one for each layer. As a suggestion, start with the formula for the capacitance of a parallel plate capacitor and think "voltage divider".
 
gneill said:
A capacitor with multiple layers of dielectrics can be modeled as a series of capacitors, one for each layer. As a suggestion, start with the formula for the capacitance of a parallel plate capacitor and think "voltage divider".

Formula: E = \frac{σ}{ε} where σ = charge density and ε = permittivity. As stated in my first post.

σ = \frac{Q}{A} where Q = charge on plate and A = plate area.

This whole concept of capacitors is very new to me, at least this aspect of it.

I also know that the voltage difference between the two plates can be expressed in terms of the work done on a positive test charge q when it moves from the positive to the negative plate.

V = \frac{work done}{charge} = \frac{Fd}{q} = Ed.

I don't know the area of the plates, I don't know the distance between them. All I know is their thickness, relative permittivity (dielectric?) and the voltage used. Can I somehow use their relative permittivity to work out, for example, the distance or area?
 
Mutaja said:
Formula: E = \frac{σ}{ε} where σ = charge density and ε = permittivity. As stated in my first post.

σ = \frac{Q}{A} where Q = charge on plate and A = plate area.

This whole concept of capacitors is very new to me, at least this aspect of it.

I also know that the voltage difference between the two plates can be expressed in terms of the work done on a positive test charge q when it moves from the positive to the negative plate.

V = \frac{work done}{charge} = \frac{Fd}{q} = Ed.

I don't know the area of the plates, I don't know the distance between them. All I know is their thickness, relative permittivity (dielectric?) and the voltage used. Can I somehow use their relative permittivity to work out, for example, the distance or area?

The distance between plates is set by the thickness of the dielectrics. Assume the same plate area for all, and represent it by a variable. It'll cancel out, so no worries.

You must have seen the formula for the capacitance of a parallel plate capacitor:
$$C = \epsilon \epsilon_o \frac{A}{d}$$
where ##\epsilon## is the relative permittivity, A the plate area, and d the plate separation. You're given the thicknesses of each capacitor. So write expressions for the capacitance of each capacitor leaving A as an unknown.

attachment.php?attachmentid=67171&stc=1&d=1393773577.gif


If you consider the equivalent circuit (far right of above figure) you should be able to see that there's a capacitive voltage divider. Can you write an expression for the voltage across the thinner capacitor (C1)? Then you'll have the simpler case of one capacitor with dielectric and potential difference to deal with.
 

Attachments

  • Fig1.gif
    Fig1.gif
    2.6 KB · Views: 572
I must've missed something, somewhere. Yes, I have the equation $$C = \epsilon \epsilon_o \frac{A}{d}$$ in my book. But both C and A is unknown? Also, you're saying that A is canceled out first, because it's the same area for both capacitors, but then I'm supposed to to rewrite the equation leaving A as the known? I still have no clue what C is because I need the A. Also, what is d?!

I thought dielectrics was the same as permittivity somehow. I'm at a total loss here. I will try to clear my head and give it a go again soon, because right now I'm clueless.

Sorry.
 
Mutaja said:
I must've missed something, somewhere. Yes, I have the equation $$C = \epsilon \epsilon_o \frac{A}{d}$$ in my book. But both C and A is unknown? Also, you're saying that A is canceled out first, because it's the same area for both capacitors, but then I'm supposed to to rewrite the equation leaving A as the known? I still have no clue what C is because I need the A. Also, what is d?!
A is an unknown that will eventually disappear once you've written the voltage divider expression. C is the capacitance of the individual capacitors and is what you want to write the expressions for using your equation above. d is the distance between plates. The d's for each capacitor are given to you in the problem statement as the thicknesses of the dielectric layers.

I thought dielectrics was the same as permittivity somehow. I'm at a total loss here. I will try to clear my head and give it a go again soon, because right now I'm clueless.

A dielectric is a material with certain electrical properties, the important one being its permittivity.
 
gneill said:
A is an unknown that will eventually disappear once you've written the voltage divider expression. C is the capacitance of the individual capacitors and is what you want to write the expressions for using your equation above. d is the distance between plates. The d's for each capacitor are given to you in the problem statement as the thicknesses of the dielectric layers.

Ok, I now get WHY A is canceled out. What I don't understand is how. I've tried setting up an expression for voltage dividing, and I realize why that's a good option - but I can't see how to do it.

For my expression for capitance for each of the capacitors, how does the relative permittivity "work"? I know permittivity as a constant. 1 for vaccume, 4 for oil etc. Relative means compared to something else in my head.
 
Mutaja said:
Ok, I now get WHY A is canceled out. What I don't understand is how. I've tried setting up an expression for voltage dividing, and I realize why that's a good option - but I can't see how to do it.
Suppose that the thinner capacitor is called C1 and the other C2. Write the voltage divider expression for the voltage across C1.

Then substitute your capacitance expressions for C1 and C2. Simplify.

For my expression for capitance for each of the capacitors, how does the relative permittivity "work"? I know permittivity as a constant. 1 for vaccume, 4 for oil etc. Relative means compared to something else in my head.
Yes, it's a unitless scaling factor for the permittivity. It tells you how much larger (or smaller) the material's permittivity is compared to that of vacuum (##\epsilon_o##). It should be clear from its location in the parallel plate capacitance formula.
 
gneill said:
Suppose that the thinner capacitor is called C1 and the other C2. Write the voltage divider expression for the voltage across C1.

Then substitute your capacitance expressions for C1 and C2. Simplify.

Am I onto something here?

VC1 = \frac{4*\frac{A}{d}}{4*\frac{A}{d}+6*\frac{A}{d}}

Since ε0 = 1.

IF this is even remotely correct, I'm still confused about the d.

I'm really trying here, but honestly, this is the best I can do. Thank you so much for staying with me trying to figuring this out.
 
  • #10
Mutaja said:
Am I onto something here?

VC1 = \frac{4*\frac{A}{d}}{4*\frac{A}{d}+6*\frac{A}{d}}

Since ε0 = 1.

IF this is even remotely correct, I'm still confused about the d.

I'm really trying here, but honestly, this is the best I can do. Thank you so much for staying with me trying to figuring this out.

Each capacitor has its own d. It's the thickness of its dielectric. That should be apparent from the diagram I posted above.

ε0 is not 1. It's the permittivity of free space (vacuum) with units of Farads per meter, so
$$\epsilon_o = 8.854 \times 10^{-12} F/m$$

But it, too, will cancel out just like the A's. Your voltage divider expression is nearly correct, but you need to include the voltage being divided and use the supplied values for the distances.
 
  • #11
gneill said:
Each capacitor has its own d. It's the thickness of its dielectric. That should be apparent from the diagram I posted above.

ε0 is not 1. It's the permittivity of free space (vacuum) with units of Farads per meter, so
$$\epsilon_o = 8.854 \times 10^{-12} F/m$$

But it, too, will cancel out just like the A's. Your voltage divider expression is nearly correct, but you need to include the voltage being divided and use the supplied values for the distances.

The supplied voltage (5000v) was a careless mistake from me when typing onto here what I had on my paper.

I now have VC1 = \frac{4*\frac{A}{0.001m}}{4*\frac{A}{0.001m}+6*\frac{A}{0.002m}} * 5000V = 2857.143 V/m(?)

Something seems wrong still.

But assuming this is correct, I now know C and the voltage across C. How do I use this new-found insight to calculate E?
 
  • #12
Mutaja said:
The supplied voltage (5000v) was a careless mistake from me when typing onto here what I had on my paper.

I now have VC1 = \frac{4*\frac{A}{0.001m}}{4*\frac{A}{0.001m}+6*\frac{A}{0.002m}} * 5000V = 2857.143 V/m(?)

Something seems wrong still.
Yup. The output of a voltage divider is volts, not volts per meter. Voltage is the potential difference across C1.

But assuming this is correct, I now know C and the voltage across C. How do I use this new-found insight to calculate E?
What you know is the potential difference in volts and the distance between the plates. Well, you had a formula before that related potential difference to field strength and distance...
 
  • #13
gneill said:
Yup. The output of a voltage divider is volts, not volts per meter. Voltage is the potential difference across C1.

Of course. I blame a messy notebook of formulas.

gneill said:
What you know is the potential difference in volts and the distance between the plates. Well, you had a formula before that related potential difference to field strength and distance...

V = Ed is the one - hopfully!

So I have that E = V/d = 2857V/0.001m = ##2.86*10^6## V/m.

That's hopefully correct. At least I now understand the method to work this out.

Thanks a lot for not giving up, and thanks a lot for helping me out at all. Really appreciate it.
 
  • #14
Mutaja said:
V = Ed is the one - hopfully!

So I have that E = V/d = 2857V/0.001m = ##2.86*10^6## V/m.

That's hopefully correct. At least I now understand the method to work this out.
Yes, that looks good.

Thanks a lot for not giving up, and thanks a lot for helping me out at all. Really appreciate it.
No worries, that's why we're here and we're happy to help. Good luck!
 

Similar threads

Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K