Calculating Fundamental Forms for a Parametrized Graph

  • Thread starter Thread starter Lee33
  • Start date Start date
  • Tags Tags
    Form Fundamental
Lee33
Messages
156
Reaction score
0
Let ##f(x,y)=(x,y,h(x,y))## be a parametrization of the graph ##T_h## of ##h:\mathbb{R}^2\to \mathbb{R}##. Compute the first fundamental forms for ##T_h## and also compute the second fundamental form.

For the first fundamental form. I got that ##f_u = \langle 1, 0, f_u \rangle## and ##f_v \langle 0,1,f_v \rangle##. Then ##f_u \dot\ d_u = 1^2 + f_u^2##, ##f_u \dot\ f_v = f_uf_v## and ##f_v \dot\ f_v = 1^2 + f_v^2##.

How can I complete this?
 
Physics news on Phys.org
Use PF standard homework format!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top