Calculating How Long Scuba Divers' O2 and He Mixture Will Last

  • Thread starter Thread starter teleport
  • Start date Start date
  • Tags Tags
    Mixture
AI Thread Summary
Scuba divers use a mixture of oxygen and helium to prevent "the bends," and the discussion revolves around calculating how long this gas mixture will last in a tank. The calculations provided include determining the total pressure in the tank and the volume of gas breathed per minute. The initial calculation suggests the gas will last approximately 8 minutes, but there is confusion regarding whether to use total pressure or partial pressure of oxygen for accuracy. Some participants suggest recalculating using the number of moles of gas per breath to refine the estimate. The final consensus indicates the duration is around 8 minutes, with slight variations based on significant figures.
teleport
Messages
240
Reaction score
0
Hi, I have been struggling a little with this question.

Scuba divers breathe a mixture of O2(g) and He(g) to avoid "the bends, a condition caused by nitrogen in the blood. If 65.0g O2(g) and 2.00g He(g) are placed in a 5.0L tank at 25oC, calculate:

If the average human takes 15 breaths per minute, and breathes in 0.50L at 1.00 atm, calculate how long the gas in the tank will last?

This is what I've done:

Pressure in the tank:

n(He) = (2.00 g He)/(4.00 g/mol) = 0.500 mol He

n(O2) = (65.0 g)/(32 .00 g/mol) = 2.03125 mol O2

n(total) = n(He) + n(O2) = 2.53125 mol

P(total) = (n(total)RT)/V = (2.53125)(0.082057)(298)/5.0
P(total) = 12.379 atm

time to empty:

P1V1 = P2V2
(1.00 atm)(0.50 L) = (12 atm)x,

where x is the volume breathed in one breath

x = 0.0416667 L

in one min: Vbreathed = 15x = 0.625 L

(1 min)/(0.625 L) = t/(5.0 L)

Therefore t = 8.0 min.

Is all that right or instead of using the total pressure in the tank I should use the partial pressure of O2? The answer should be 7.8 min which I'm not getting. But I have also tried it with O2 partial volume and I don't get the answer. Am I missing something? Any help is appreciated. Thanks.
 
Physics news on Phys.org
Try calculating the number of moles of ideal gas per breath and applying that answer to the number of moles of He/O2 available.

I get 8.2 minutes... 8 minutes if significant figures are observed.
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top