Calculating Integral Momentum Forces: Finding Total Change from t=6 to t=8

  • Thread starter Thread starter chukie
  • Start date Start date
  • Tags Tags
    Integral Momentum
chukie
Messages
79
Reaction score
0
forces on an object is given by F(t)=sin t, what's the total change in momentum of the object from time t=6 to 8?

Is it just integral sign 6 to 8 (sin t) dt?
 
Last edited:
Physics news on Phys.org
yes.
 
thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top