Calculating Irreducible Tensor Operators in a Given Basis

  • Thread starter Thread starter msamp
  • Start date Start date
  • Tags Tags
    Tensors
msamp
Messages
1
Reaction score
0
Perhaps very simple, but it eludes me:

How does one calculate an explicit form for the irreducible tensor operators in a given basis? In my particular case, I'm looking at expanding a 3X3 density matrix in the angular momentum basis. T_1n (n = -1, 0, 1) are simple enough : J+, J_z, J-. But what about T_2n (n = -2 ... 2)? I know the answer, but don't know how it was arrived at...

Clues?

(Note : '_', as usual, indicates that what follows is a subscript)


Oh - and if you can help out with a physical significance for the T_2n I would appreciate it. Again - T_1n are angular momenta, but T_2n?
 
Physics news on Phys.org
The explicit form of the irreducible tensor operators, T_2n, can be derived using the Wigner-Eckart theorem. This theorem states that for a given angular momentum state, the matrix elements of an irreducible tensor operator can be written as a product of a scalar coefficient and a reduced matrix element which is independent of the quantum numbers of the states. The scalar coefficient is dependent on the Clebsch-Gordan coefficients. The reduced matrix elements can be obtained from the Racah algebraic equations. The Racah algebraic equations are a set of equations that relate the reduced matrix elements to each other. They can be used to determine the explicit form of all irreducible tensor operators in the given basis. The physical significance of the T_2n operators is that they contain information about the quadrupole moments of a system. They describe the spatial arrangement of the charge distribution in space.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top