Calculating Limit: \lambda^t/k with 0<\lambda<1

  • Thread starter Thread starter phonic
  • Start date Start date
  • Tags Tags
    Calculation Limit
phonic
Messages
28
Reaction score
0
Dear members,

I am calculating the following limit:

<br /> \lim_{t\rightarrow \infty} \sum_{k=1}^{t-2} \frac{\lambda^{t-k-1}}{k}<br />
where
<br /> 0 &lt; \lambda &lt;1<br />

Does anybody know how to do it? Thanks a lot!
 
Physics news on Phys.org
A hint:

0\leq \lim_{t\rightarrow \infty} \sum_{k=1}^{t-2} \frac{\lambda^{t-k-1}}{k}=\lim_{t\rightarrow \infty} \lambda^t \sum_{k=1}^{t-2} \frac{\lambda^{k-1}}{k} \leq \lim_{t\rightarrow \infty} \lambda^t \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{k}
 
Last edited by a moderator:


Hello,

To calculate this limit, we can use the fact that as t approaches infinity, the sum will approach a Riemann sum for the function f(x) = \frac{\lambda^{x-1}}{x} from k=1 to infinity. This leads to the integral:

\int_{1}^{\infty} \frac{\lambda^{x-1}}{x} dx

Using integration by parts, we can solve this integral to get the final answer of \frac{-\ln\lambda}{1-\lambda}. Therefore, the limit is equal to \frac{-\ln\lambda}{1-\lambda}. I hope this helps! Let me know if you have any further questions.
 

Similar threads

Replies
12
Views
3K
Replies
9
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Replies
9
Views
1K
Replies
3
Views
1K
Back
Top