.....
- 53
- 0
Homework Statement
How can I calculate it for \frac{1}{1+cos^2(x)} by using the fact that \frac{1}{1+x^2} = 1 - x^2 + x^4 - ...?
Homework Equations
Given in the problem.
The Attempt at a Solution
I tried letting u = cos(x), then
\frac{1}{1+cos^2(x)} = \frac{1}{1+u^2} = 1 - u^2 + u^4 - ... = 1 - cos^2(x) + cos^4(x) - ...
But I don't think this is right because the first term should be 0.5, not 1... and I don't see how a -0.5 might pop out of this series of cos terms...and even if it somehow does, I think this question is not meant to be that difficult...
The answer I am trying to get is \frac{1}{2} + \frac{1}{4}x^2 + ...
Any ideas?
Thanks