Calculating Mass and Weight of a Planet

AI Thread Summary
To calculate the total mass of the planet with a varying density D(r), integrate the density function over the volume using spherical coordinates, resulting in a straightforward radial integral after accounting for angular components. The total mass can then be used to determine the weight of a one-kilogram mass at the planet's surface using the universal law of gravitation, F = GmM/r². The integration approach requires careful consideration of the density function and the volume element. Clarification on the integration steps may be needed to resolve any issues encountered. Properly applying these methods will yield the desired results for both mass and weight calculations.
whereisccguys
Messages
21
Reaction score
0
2 part question

The density of a certain planet varies with radial distance as: D(r) = Do*[1-(a*r/Ro)], where Ro= 3.1623×106 m is the radius of the planet, Do = 3160 kg/m3 is its central density, and a = 0.160. Calculate the total mass of this planet.

Calculate the weight of a one kilogram mass located on the surface of the planet.

i tried integrating D(r) with and plugin in the radius of the planet but it doesn't work

i know this question has somethin to do with integrating through shell method but I'm not sure how to do it

can any1 help me?
 
Physics news on Phys.org
Why doesn't it work?

~H
 
whereisccguys said:
2 part question

The density of a certain planet varies with radial distance as: D(r) = Do*[1-(a*r/Ro)], where Ro= 3.1623×106 m is the radius of the planet, Do = 3160 kg/m3 is its central density, and a = 0.160. Calculate the total mass of this planet.

Calculate the weight of a one kilogram mass located on the surface of the planet.

i tried integrating D(r) with and plugin in the radius of the planet but it doesn't work

i know this question has somethin to do with integrating through shell method but I'm not sure how to do it

can any1 help me?

I am not sure what you integrated exactly but here are some thoughts:

First, you must determined the total massof the planet, right? This is given by the integral of D(r) dV = D(r) r^2 sin(\theta) dr d\theta d\phi. The angular integrals are trivial and give 4 \pi. The radial integral is straightforward.

Then, you must use this in the universal law of gravitation to determine the *weight* of 1 kg at the surface of the planet, F= {G m M \over r^2}.

Patrick
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top