Calculating Moment of Inertia for a Rolling Can of Soup

  • Thread starter Thread starter Impathy
  • Start date Start date
  • Tags Tags
    Rolling
AI Thread Summary
The discussion focuses on calculating the moment of inertia for a rolling can of soup on an incline. The user initially struggles with the equations, particularly in determining the correct expression for final velocity, mistakenly using average velocity instead. After feedback, they realize that using 2l/t instead of l/t resolves their issue, leading to the correct calculation of moment of inertia. The conversation highlights the importance of distinguishing between average and final velocity in physics problems. Ultimately, the user successfully corrects their approach and finds a solution.
Impathy
Messages
12
Reaction score
0
Disregard this post, I will reply when I can get the equations to work for me! Sorry ...

Here's a problem I'm struggling with. It says I have a can of soup with a given mass (m), height (h), and diameter (2r). It's placed at rest on the top of an incline with a given length (l) and angle (theta) to the horizontal. I need to calculate the moment of inertia (I) of the can if it takes so much time (t) to reach the bottom of the incline. Here's what I tried:
<br /> <br /> mgl\sin\theta = \frac{1}{2}mv^{2}+\frac{1}{2}I\omega^{2} \\<br /> mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\omega^{2} \\<br /> mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{v}{r}\right)^{2} \\<br /> mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{\left(\frac{l}{t}\right)^{2}}{{r}^{2}}\right)} \\<br /> mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)} \\<br /> mgl\sin\theta - \frac{1}{2}m\left(\frac{l}{t}\right)^{2} = \frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)} \\<br /> 2\left[m\left(gl\sin\theta - \frac{1}{2}\left(\frac{l}{t}\right)^{2}\right)\right] = \frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)} \\<br /> \left\frac{(2\left[m\left(gl\sin\theta - \frac{1}{2}\left(\frac{l}{t}\right)^{2}\right)\right]}{\frac{1}{2}\left(\frac{\left}\right) = I \\<br /> \frac{2m\left(gl\sin\theta-\frac{1}{2}\frac{l^{2}}{t^{2}}\right)}{\frac{l^{2}}{r^{2}t^{2}}} = I \\<br /> <br />

It looks like the units work out for the moment of inertia, but I'm getting the wrong answer. Is my algebra questionable or is there something else I'm not seeing? Thanks in advance.
 
Last edited:
Physics news on Phys.org
Equations (Latex source) from Impathy

mgl\sin\theta = \frac{1}{2}mv^{2}+\frac{1}{2}I\omega^{2}
mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\omega^{2}
mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{v}{r}\right)^{2}
mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{\left(\frac{l}{t}\right)^{2}}{{r}^{2}}\right)}
mgl\sin\theta = \frac{1}{2}m\left(\frac{l}{t}\right)^{2}+\frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)}
mgl\sin\theta - \frac{1}{2}m\left(\frac{l}{t}\right)^{2} = \frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)}
2\left[m\left(gl\sin\theta - \frac{1}{2}\left(\frac{l}{t}\right)^{2}\right)\right] = \frac{1}{2}I\left(\frac{\left l^{2}}{{r}^{2}t^{2}}\right)}
\left[\frac{(2\left[m\left(gl\sin\theta - \frac{1}{2}\left(\frac{l}{t}\right)^{2}\right)\right]}{\frac{1}{2}\left(\frac{\left}\right) = I
\frac{2m\left(gl\sin\theta-\frac{1}{2}\frac{l^{2}}{t^{2}}\right)}{\frac{l^{2}}{r^{2}t^{2}}} = I
It looks like the units work out for the moment of inertia, but I'm getting the wrong answer. Is my algebra questionable or is there something else I'm not seeing? Thanks in advance
 
Last edited:
Your equations are fine, except just at the beginning!
Also a couple of arithmetic errors in the last two lines (per my first post)

You have set v = l/t, but that is the average velocity, and v, in your 1st line, is for the final velocity.

You have to put in the proper expression for the final velocity and it should all fall out.
 
Thanks for your help -- I got it. :) I just needed 2l/t instead of l/t and it worked out. :)
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top