Calculating Rate Of Separation Between Two Arcs

AI Thread Summary
A formula for calculating the rate of separation between two planes with different turn radii can be derived using geometry. The two planes, starting from a common point and traveling at the same speed, will separate more as their turn radii differ. Specifically, with radii of 54,795 feet and 34,546 feet, the separation increases significantly due to the difference in distance traveled during turns. As one plane completes its turn faster, it creates a larger separation over time. To derive the formula, one should analyze the angles turned by each plane and use geometric principles to establish the relationship.
Badmachine
Messages
13
Reaction score
0

Homework Statement



Is there a formula for calculating the rate of separation (per degree) for two planes beginning at a common point, traveling at the same speed, performing turns with two different turn radiuses?


Homework Equations



See linked image for better understanding (separation values for image were measured):

http://i224.photobucket.com/albums/dd121/88Badmachine88/CircleRadius-1.jpg

The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
The formula can easily be derived with some geometry. I don't know what the formula is or where on the Internet you can find it, but if you want to try deriving it, I'll be glad to help.
 
Thanks. Not sure where to begin.

The turn radiuses in question:

a) 54,795 feet at 545mph

b) 34,546 feet at 545mph

The difference between the two radiuses:

54,795 - 34,546 = 17,410.

The separation seems to become exponentially larger. Also, the difference in distance traveled means the plane traveling the smaller circumference completes its 360 turn before the other.
 
To start, try assuming that at the time the first vehicle has turned by "a" degrees, the second vehicle has turned by "b" degrees. You can easily find "a" and "b" given the time it took the vehicles to reach those angles.

Now, draw a few triangles on your diagram and proceed from there.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top