Hart
- 168
- 0
Homework Statement
Finding the stationary point(s) of the function:
f(x,y) = xy - \frac{y^{3}}{3}
.. on the line defined by x+y = -1.
For each point, state whether it is a minimum or maximum.
Homework Equations
.. within the problem statement and solutions.
The Attempt at a Solution
This is what I have so far:
f(x,y) = xy - \frac{y^{3}}{3}
g(x,y) = x+y-1 = 0
Therefore need to extemise:
F(x,y,\lambda) = f + \lambda g = xy - \frac{y^{3}}{3} + \lambda(x+y-1)
So calculating the partial derivatives:
\frac{\partial F}{\partial x} = y + \lambda = 0
\frac{\partial F}{\partial y} = x - 3\left(\frac{y^{2}}{3}\right) + \lambda = x - y^{2} + \lambda = 0
\frac{\partial F}{\partial \lambda} = x + y - 1 = 0
Then need to look for all consistent solutions:
1. y = \lambda
.. but now I'm stuck on what to do now, seemto have done something wrong because I can't get more consistent soluations and then nice simultaneous equations to equate
