Calculating the 2nd Derivative of 3x - xln3 | Homework Help

  • Thread starter Thread starter magma_saber
  • Start date Start date
  • Tags Tags
    Derivative
magma_saber
Messages
73
Reaction score
0

Homework Statement


What is the 2nd derivative of 3x - x(ln3)?


Homework Equations





The Attempt at a Solution


I got this:
f'(x) = 3x*ln3 -(ln3+x/3)
f''(x) = 3x*ln3*ln3 -1/3 - 1/3
 
Physics news on Phys.org
f'(x) = 3^x \cdot ln3 -(ln3+\frac{x}{3})

How did you get the x/3 part? And in your second derivative, are you claiming that \frac{d}{dx} ln(3) = \frac{1}{3}? You need to remember that ln(3) is a constant.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top