Oxymoron
- 868
- 0
Could someone check if I have done this right.
R_1 = x^2\partial_3 - x^3\partial_2
R_2 = x^3\partial_1 - x^1\partial_3
R_3 = x^1\partial_2 - x^2\partial_1
Where x^i are coordinates.
I need to calculate the commutator [R_1,R_2].
[R_1,R_2] = x^2\partial_3x^3\partial_1 - x^3\partial_1x^2\partial_3 + x^3\partial_2x^1\partial_3 - x^1\partial_3x^3\partial_2 <br /> - (x^3\partial_2x^3\partial_1-x^3\partial_1x^3\partial_2) - (x^2\partial_3x^1\partial_3-x^1\partial_3x^2\partial_3)<br />
<br /> .\quad\quad\quad = x^2x^3\partial_3\partial_1 - x^2x^3\partial_1\partial_3 + x^1x^3\partial_2\partial_3-x^1x^3\partial_2\partial_3<br /> - x^3x^3\partial_2\partial_1 + x^3x^3\partial_1\partial_2-x^1x^2\partial_3\partial_3+x^1x^2\partial_3\partial_3<br />
.\quad\quad\quad = x^2\partial_1-x^2\partial_1+x^1\partial_2-x^1\partial_2 -x^3x^3\partial_2\partial_1 + x^3x^3\partial_1\partial_2 - x^1x^2\partial_3\partial_3 + x^1x^2\partial_3\partial_3<br />
<br /> .\quad\quad\quad = 0<br />
And as a result,
[R_1,R_2] = [R_2,R_3] = [R_3,R_1] = 0
by cyclically permuting the indices.
R_1 = x^2\partial_3 - x^3\partial_2
R_2 = x^3\partial_1 - x^1\partial_3
R_3 = x^1\partial_2 - x^2\partial_1
Where x^i are coordinates.
I need to calculate the commutator [R_1,R_2].
[R_1,R_2] = x^2\partial_3x^3\partial_1 - x^3\partial_1x^2\partial_3 + x^3\partial_2x^1\partial_3 - x^1\partial_3x^3\partial_2 <br /> - (x^3\partial_2x^3\partial_1-x^3\partial_1x^3\partial_2) - (x^2\partial_3x^1\partial_3-x^1\partial_3x^2\partial_3)<br />
<br /> .\quad\quad\quad = x^2x^3\partial_3\partial_1 - x^2x^3\partial_1\partial_3 + x^1x^3\partial_2\partial_3-x^1x^3\partial_2\partial_3<br /> - x^3x^3\partial_2\partial_1 + x^3x^3\partial_1\partial_2-x^1x^2\partial_3\partial_3+x^1x^2\partial_3\partial_3<br />
.\quad\quad\quad = x^2\partial_1-x^2\partial_1+x^1\partial_2-x^1\partial_2 -x^3x^3\partial_2\partial_1 + x^3x^3\partial_1\partial_2 - x^1x^2\partial_3\partial_3 + x^1x^2\partial_3\partial_3<br />
<br /> .\quad\quad\quad = 0<br />
And as a result,
[R_1,R_2] = [R_2,R_3] = [R_3,R_1] = 0
by cyclically permuting the indices.
Last edited: