zcd
- 197
- 0
Homework Statement
\int_{0}^{\infty} \frac{\sin^{3}(x)}{x^{3}}\,dx
Homework Equations
e^{ix}=\sin(x)+i\cos(x)
\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}
The Attempt at a Solution
\int_{0}^{\infty} \frac{\sin^{3}(x)}{x^{3}}\,dx=\int_{0}^{\infty} \frac{1}{x^{3}} (\frac{e^{ix}-e^{-ix}}{2i})^3\,dx
reduces eventually to
\int_{0}^{\infty} \frac{\sin(3x)-3\sin(x)}{4x^{3}}\,dx
by parts
=\frac{\sin(3x)-3\sin(x)}{-8x^{2}}+\int_{0}^{\infty} \frac{3\cos(3x)-3\cos(x)}{2x^{2}}\,dx
by parts again
=\frac{\sin(3x)-3\sin(x)}{-8x^{2}}-\frac{3\cos(3x)-3\cos(x)}{8x}-\int_{0}^{\infty} \frac{9\sin(3x)-3\sin(x)}{8x}\,dx}
reduces to
\lim_{t \to \infty} \frac{3}{8} {\rm Si}(t)-\frac{9}{8} {\rm Si}(3t) + \left[ \frac{3\sin(x)}{8x^{2}}-\frac{\sin(3x)}{8x^{2}}+\frac{3\cos(x)}{8x}-\frac{3\cos(3x)}{8x}\right]_{0}^{t}
I'm not sure how to evaluate at last step. Did I make some error before? or is it supposed to be divergent because none of the terms inside the bracket can handle the 0 limit.
Last edited: