latentcorpse
- 1,411
- 0
The effective action Γ[ϕ] for a scalar field theory is a functional of an auxiliary field ϕ(x). Both
Γ and ϕ are defined in terms of the generating functional for connected graphs W[J] as
W[J] + \Gamma[\phi] = \int d^dx J \phi , \quad \frac{\delta}{\delta J(x)} W[J] = \phi(x)
Show
- \int d^dz G_2(x,z) \Gamma_2(z,y) = \delta^{(d)}(x-y)
where G_n(x_1 , \dots , x_n) = (-i)^{n-1} \frac{\delta}{\delta J(x_1)} \dots \frac{\delta}{\delta J(x_n)} W[J]
are the connected n point functions of the theory and
\Gamma_n(x_1 , \dots , x_n) = -i \frac{\delta}{\delta \phi(x_1)} \dots \frac{\delta}{\delta \phi(x_n)} \Gamma[\phi]
So far I have just substituted from the definitions to get
- \int d^dz G_2(x,z) \Gamma_2(z,y) = \int d^dz \frac{\delta}{\delta J(x)} \frac{\delta}{\delta J(z)} W[J] \frac{\delta}{\delta \phi(z)} \frac{\delta}{\delta \phi(y)} \Gamma[\phi]
which becomes
\int d^dz \frac{\delta}{\delta J(x)} \phi(y) \frac{\delta}{\delta \phi(z)} J(y)
But then I am lost...
Γ and ϕ are defined in terms of the generating functional for connected graphs W[J] as
W[J] + \Gamma[\phi] = \int d^dx J \phi , \quad \frac{\delta}{\delta J(x)} W[J] = \phi(x)
Show
- \int d^dz G_2(x,z) \Gamma_2(z,y) = \delta^{(d)}(x-y)
where G_n(x_1 , \dots , x_n) = (-i)^{n-1} \frac{\delta}{\delta J(x_1)} \dots \frac{\delta}{\delta J(x_n)} W[J]
are the connected n point functions of the theory and
\Gamma_n(x_1 , \dots , x_n) = -i \frac{\delta}{\delta \phi(x_1)} \dots \frac{\delta}{\delta \phi(x_n)} \Gamma[\phi]
So far I have just substituted from the definitions to get
- \int d^dz G_2(x,z) \Gamma_2(z,y) = \int d^dz \frac{\delta}{\delta J(x)} \frac{\delta}{\delta J(z)} W[J] \frac{\delta}{\delta \phi(z)} \frac{\delta}{\delta \phi(y)} \Gamma[\phi]
which becomes
\int d^dz \frac{\delta}{\delta J(x)} \phi(y) \frac{\delta}{\delta \phi(z)} J(y)
But then I am lost...