I Calculating the eigenvalue of orbital angular momentum

Click For Summary
The discussion focuses on calculating the orbital angular momentum for the state l=1 and m=-1 using the angular momentum operator. The operator is expressed in terms of spherical coordinates, and the user attempts to apply it to the wave function Y_{1,-1} = csin(θ)e^{-iφ}. Initially, the user encounters a result of zero, which contradicts the expected value of 2ħ². After clarification from another participant, the user realizes a misinterpretation of the sine and cosine terms in the calculations, leading to the correct understanding of the angular momentum measurement. The conversation highlights the importance of careful algebraic manipulation in quantum mechanics calculations.
TheBlueDot
Messages
16
Reaction score
2
Hello,

I'm trying to calculate the measurement of the orbital angular momentum of the state l=1 and m = -1. The operator for the angular momentum squared is
## L^2 = -\hbar (\frac{1}{sin\theta}(\frac{\partial}{\partial \theta}(sin\theta\frac{\partial}{\partial \theta})) +\frac{1}{sin\theta^2}\frac{\partial^2}{\partial\phi^2}) ##,

which expands to
## L^2 = -\hbar (\frac{1}{sin\theta}(\frac{\partial sin\theta}{\partial \theta}\frac{\partial}{\partial \theta}+sin\theta \frac{\partial^2}{\partial \theta^2}) +\frac{1}{sin\theta^2}\frac{\partial^2}{\partial\phi^2}) ##

When operate this on the wave function ##Y_{1,-1} = csin\theta e^{-i\phi}##, I got

##Y_{1,-1}*(\frac{cos^2\theta}{sin\theta} -\frac{sin^2\theta}{sin\theta}-\frac{1}{sin\theta})##,

which is zero. The answer should be ##2\hbar^2##.

If the cosine term is zero, then I'll get the right result.

Please help!

Thanks
 
Physics news on Phys.org
TheBlueDot said:
Hello,

I'm trying to calculate the measurement of the orbital angular momentum of the state l=1 and m = -1. The operator for the angular momentum squared is
## L^2 = -\hbar (\frac{1}{sin\theta}(\frac{\partial}{\partial \theta}(sin\theta\frac{\partial}{\partial \theta})) +\frac{1}{sin\theta^2}\frac{\partial^2}{\partial\phi^2}) ##,

which expands to
## L^2 = -\hbar (\frac{1}{sin\theta}(\frac{\partial sin\theta}{\partial \theta}\frac{\partial}{\partial \theta}+sin\theta \frac{\partial^2}{\partial \theta^2}) +\frac{1}{sin\theta^2}\frac{\partial^2}{\partial\phi^2}) ##

When operate this on the wave function ##Y_{1,-1} = csin\theta e^{-i\phi}##, I got

##Y_{1,-1}*(\frac{cos^2\theta}{sin\theta} -\frac{sin^2\theta}{sin\theta}-\frac{1}{sin\theta})##,

which is zero. The answer should be ##2\hbar^2##.

If the cosine term is zero, then I'll get the right result.

Please help!

Thanks

##\frac{cos^2(\theta)}{sin(\theta)} - \frac{sin^2(\theta)}{sin(\theta)} - \frac{1}{sin(\theta)} = \frac{1-sin^2(\theta) - sin^2(\theta) - 1}{sin(\theta)} = \frac{-2 sin^2(\theta)}{sin(\theta)} = -2 sin(\theta)##
 
  • Like
Likes TheBlueDot and BvU
stevendaryl said:
##\frac{cos^2(\theta)}{sin(\theta)} - \frac{sin^2(\theta)}{sin(\theta)} - \frac{1}{sin(\theta)} = \frac{1-sin^2(\theta) - sin^2(\theta) - 1}{sin(\theta)} = \frac{-2 sin^2(\theta)}{sin(\theta)} = -2 sin(\theta)##
@stevendaryl,
Thanks for your response. I feel silly now. I looked at the ##sin^2(\theta) -1 ## and thought it was ##cos^2(\theta)##.
 
  • Like
Likes stevendaryl
It doesn't say ##\ \ \sin^2(\theta) -1\ ##, but ##\ \ - \sin^2(\theta) -1\ \ ## :rolleyes:
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
First, I need to check that I have the 3 notations correct for an inner product in finite vector spaces over a complex field; v* means: given the isomorphism V to V* then: (a) physicists and others: (u,v)=v*u ; linear in the second argument (b) some mathematicians: (u,v)=u*v; linear in the first argument. (c) bra-ket: <v|u>= (u,v) from (a), so v*u . <v|u> is linear in the second argument. If these are correct, then it would seem that <v|u> being linear in the second...