Calculating the thermal coefficient between the insulated interior of a telescope instrument package and the cold ambient air outside

  • I
  • Thread starter Erwinux
  • Start date
  • #1
Erwinux
2
0
I've built an insulated chamber to protect a sensitive instrument at freeze temperatures in the winter. The instrument is mounted on a telescope, so the heat inside the chamber will slowly dissipate in the ambient. A digital PID thermostat is used to keep the temperature at a safeguard level. The outside and inside temperature and the duty cycle of the thermostat are recorded on a remote server, so I know the power consumed at a certain difference of temperature, anytime.

How to calculate the outside minimum temperature the heater will maintain the safeguard temperature inside insulated chamber?
 

Answers and Replies

  • #2
DaveE
Science Advisor
Gold Member
2,834
2,483
A simple model will work pretty well here for steady state solutions. The power your heater makes will be proportional to the temperature difference it creates. This should be a linear relationship in normal stable systems (not true if you have things that change state like water freezing/melting) so twice the heat flow (power) will create twice the temperature difference. Also, the temperature difference won't depend much on the temperature values within "normal" temperature ranges.

So, you should be able to get a good estimate by collecting some power-temperature data and then extrapolate to maximum heater power and the minimum desired temperature.
 
  • #3
erobz
Gold Member
1,500
664
Heater Box.jpg


So you have something like that above.

I think you can apply surface energy balance to the interior/exertion walls to get in the ball park for a steady state solution. Its a bit hand wavy, but it shouldn't be that bad:

Take ## A_s ## to be the exterior surface area of the enclosure
## k ## is the thermal conductivity of the insulation
##L## is the insulation thickness
## h_{int}## is the average convection coefficient inside the enclosure maybe ## 10 \rm{ \frac{W}{m^2 K}}##
## h_{ext}## is the average convection coefficient outside the enclosure could be as high as ## 200\rm{ \frac{W}{m^2 K}}##
## q ## is the maximum output power rating for the heater

Then you get ## T_{int} ## from solving the following relation:

$$ q = A_s \frac{T_{int} - T_{\infty}}{ \frac{1}{h_{int}} + \frac{L}{k} + \frac{1}{h_{ext}} } $$

let me know if you have any questions.
 

Suggested for: Calculating the thermal coefficient between the insulated interior of a telescope instrument package and the cold ambient air outside

Replies
3
Views
324
Replies
4
Views
157
Replies
3
Views
302
Replies
1
Views
1K
  • Last Post
Replies
3
Views
208
Replies
2
Views
294
  • Last Post
Replies
2
Views
105
Replies
3
Views
298
  • Last Post
Replies
3
Views
386
Top