Calculating the Total Mass on a Surface Bounded by a Triangle

  • Thread starter Thread starter r-rogerthat
  • Start date Start date
  • Tags Tags
    Mass
r-rogerthat
Messages
2
Reaction score
0

Homework Statement


Let the surface S be the part of the plane 2x-y+z=3 that lies above the triangle in the xy plane that is bounded by the lines y=0, x=1 and y=x. Find the total mass of S if its density (mass per unit area) is given by

ρ(x,y,z)= xy+z


Homework Equations





The Attempt at a Solution



Ok so i know this is a double integral. the limite will be
0≤x≤1
0≤y≤2x-3

and f'(x)= 2, f'(y)= -1

√(f'(x) + f'(y) + 1)= √6

so my equation is

√6∫∫(xy+z)

and i have a feeling I am meant to convert this into polar coordinates but how do you convert the limits to polar coordinates?
 
Physics news on Phys.org
You don't need any polar coordinates here. You simply need to express z via x and y in the integral you have got so far. And by the way, it is a mistake not to write dxdy in the integral.
 
A volume integral seems to yield an easy result here.
 
thanks heaps guys, i figured it out, and sorry about the late reply
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top