ibc said:
This doesn't make any sense, I know that if a ship "sits" above me in a gravitational field, I'll see its clocks different than mine, yet if I go back to the inertial frame calculation, each time the inertial frame is at the same speed, which is zero.
What do you mean "the inertial frame is at the same speed"? I was talking about the speed of the circling ship in the inertial frame, not the speed of the inertial frame itself (what would you be taking the speed of the inertial frame relative to? Itself?)
ibc said:
therefore by that calculation there won't be any time differences between me and the ship above
You're talking about a ship at rest in some frame and experiencing gravitational time dilation? Gravity involves the curved spacetime of general relativity, whereas "inertial frames" are defined in the uncurved gravity-free spacetime of special relativity. In general relativity it's impossible for any coordinate system defined over a large region of curved spacetime to be "inertial", although the http://www.aei.mpg.de/einsteinOnline/en/spotlights/equivalence_principle/index.html says that a freefalling observer can have a "locally inertial" coordinate system in an infinitesimally small region of spacetime around an event on their worldline, and that in this locally inertial coordinate system the laws of physics will look the same as in an inertial one in SR.
It is actually possible to have a "pseudo-gravitational field" in uncurved spacetime, as discussed in
this section of the
twin paradox page. This is what's seen in a
non-inertial coordinate system where an accelerating observer is at rest (the laws of physics don't obey the same equations in non-inertial systems as they do in inertial ones; in particular, the velocity-based time dilation equation that is used in inertial frames cannot be assumed to work in non-inertial ones). Here, a variation on the equivalence principle says that the "gravitational" time dilation seen by clocks at different positions in the non-inertial
Rindler coordinate system is equivalent to the time dilation between clocks undergoing
Born rigid acceleration in inertial coordinates. But from the perspective of the inertial frame, the time dilation is explained entirely in terms of the velocities of the the different accelerating clocks--the key is that in order to satisfy the condition of "Born rigidity" the clocks must accelerate at different rates in the inertial frame. Born rigidity basically means that the distance between the clocks in either clock's instantaneous inertial rest frame remains constant from one moment to another (even though each clock will have a different instantaneous inertial rest frame at each moment)...the page on Rindler coordinates above explains it like this:
We can imagine a flotilla of spaceships, each remaining at a fixed value of s by accelerating at 1/s. In principle, these ships could be physically connected together by ladders, allowing passengers to move between them. Although each ship would have a different proper acceleration, the spacing between them would remain constant as far as each of them was concerned.
It also shows a diagram with the worldlines of different members of the flotilla drawn from the perspective of an inertial frame, you can see that their velocities are different at any given moment (shown by the slope of each worldline at a given value of t):