Calculating work done using line integrals

Click For Summary
To calculate the work done by Sisyphus while pushing a boulder up a 100-ft tall spiral staircase, the force exerted is constant at 50 lb and tangent to the path described parametrically. The derivative of the path, x'(t), is found to be (-15sin(3t), 15cos(3t), 10). To express the force in Cartesian coordinates, it is determined that F equals 50 times the normalized derivative of the path. The total work done is calculated using the integral of the force dot product with the differential arc-length along the path. The discussion emphasizes the importance of translating the force into the appropriate components for accurate work calculation.
toforfiltum
Messages
341
Reaction score
4

Homework Statement


Sisyphus is pushing a boulder up a 100-ft tall spiral staircase surrounding a cylindrical castle tower.

a) Suppose Sisyphus's path is described parametrically as $$x(t)=(5\cos3t, 5\sin3t, 10t)$$, $$\space 0\leq t\leq10$$.
If he exerts a force with constant magnitude of 50 Ib tangent to his path, find the work Sisyphus does in pushing the boulder up to the top of the tower.

b) Just as Sisyphus reaches the top of the tower, he sneezes and the boulder slides all the way to the bottom. If the boulder weighs 75 Ib, how much work is done by gravity when the boulder reaches the bottom?

Homework Equations

The Attempt at a Solution


OK, I'm stuck at a), so I would just type out what I have done so far.
I know that I must find ##x'(t)##, so ##x'(t)=(-15\sin3t, 15\cos3t, 10)##. However, this is where I'm stuck. Since usually, force is given in its ##xyz## components, it is easy for me to just do the dot product. But here, it just states that the force is 50 tangent to the path. How do I find the force in the ##xyz## components? Any hints?

Thanks!
 
Physics news on Phys.org
toforfiltum said:

Homework Statement


Sisyphus is pushing a boulder up a 100-ft tall spiral staircase surrounding a cylindrical castle tower.

a) Suppose Sisyphus's path is described parametrically as $$x(t)=(5\cos3t, 5\sin3t, 10t)$$, $$\space 0\leq t\leq10$$.
If he exerts a force with constant magnitude of 50 Ib tangent to his path, find the work Sisyphus does in pushing the boulder up to the top of the tower.

b) Just as Sisyphus reaches the top of the tower, he sneezes and the boulder slides all the way to the bottom. If the boulder weighs 75 Ib, how much work is done by gravity when the boulder reaches the bottom?

Homework Equations

The Attempt at a Solution


OK, I'm stuck at a), so I would just type out what I have done so far.
I know that I must find ##x'(t)##, so ##x'(t)=(-15\sin3t, 15\cos3t, 10)##. However, this is where I'm stuck. Since usually, force is given in its ##xyz## components, it is easy for me to just do the dot product. But here, it just states that the force is 50 tangent to the path. How do I find the force in the ##xyz## components? Any hints?

Thanks!

The total work Sisyphus performs is ##W = \int \vec{F} \cdot d\vec{s}##, where ##d\vec{s}## is the arc-length along the tangent. You were told that ##\vec{F}\, \| \,d\vec{s}## at all points.
 
Ray Vickson said:
The total work Sisyphus performs is ##W = \int \vec{F} \cdot d\vec{s}##, where ##d\vec{s}## is the arc-length along the tangent. You were told that ##\vec{F}\, \| \,d\vec{s}## at all points.
Yes, I think I've got it. ##F## is ##50 \frac {x'(t)}{\left\|x'(t)\right\|}##
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
12
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
12
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K