facenian
- 433
- 25
I posted this question in the homework page but I got no answers, so will try here.
Given the wave function of a (spinless) particle I need to expres in terms of \psi(\vec{r}) the probability for simultaneous measurements of X y P_z to yield :
x_1 \leq x \leq x_2
p_z \geq 0
I got the result:
\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx \int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z <\vec{p}|\vec{r}>\psi(\vec{r})<\psi|\vec{p}>
To get this I evaluated the expression <\psi|P_2P_1|\psi> where P_1 and P_2 are the proyectors:
P_1=\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx|x,y,z><x,y,z|
P_2=\int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z|p_x,p_y,p_z><p_x,p_y,p_z|
I need to know two things: 1) is my result correct? 2) in case it is correct, is there any other more simple or concrete answer?
Given the wave function of a (spinless) particle I need to expres in terms of \psi(\vec{r}) the probability for simultaneous measurements of X y P_z to yield :
x_1 \leq x \leq x_2
p_z \geq 0
I got the result:
\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx \int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z <\vec{p}|\vec{r}>\psi(\vec{r})<\psi|\vec{p}>
To get this I evaluated the expression <\psi|P_2P_1|\psi> where P_1 and P_2 are the proyectors:
P_1=\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx|x,y,z><x,y,z|
P_2=\int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z|p_x,p_y,p_z><p_x,p_y,p_z|
I need to know two things: 1) is my result correct? 2) in case it is correct, is there any other more simple or concrete answer?