Calculations using the Ideal Gas Law

Click For Summary
The discussion revolves around using the Ideal Gas Law, represented by the equation PV = nRT, to calculate the number of moles (n) given specific values for volume, pressure, and temperature. The values provided are a volume of 2.1 * 10^-4 m^3, a pressure of 5.3 * 10^5 Pa, and a temperature of 310 K. Participants emphasize the need to rearrange the equation to solve for n, which is the first step in the calculation. Additionally, there is a mention of needing to know the number of atoms in one mole of the gas for further calculations. The conversation highlights the importance of understanding the Ideal Gas Law for solving related problems.
ArcHorizon
Messages
3
Reaction score
1
Homework Statement
I got this question from one of the tutors, and they told me that this was a basic question. To me, it seemed to be a hard question, since it was my first time taking lessons for Physics Class.
So, this is the question.

[An ideal monatomic gas is kept in a container of volume 2.1 × 10–4 m3, temperature 310 K and pressure 5.3 × 105 Pa.]
[The volume of the gas is increased to 6.8 × 10–4 m3 at a constant temperature.]

a.i) State what is meant by an ideal gas.
a.ii) Calculate the number of atoms in the gas.
a.iii) Calculate, in J, the internal energy of the gas.
Relevant Equations
Not Sure This will help but
pV = nRT

Pressure in Pa
Volume in m^3
Temperature in kelvin
n is number of moles
R is gas constant
2.1 * 10^-4m/3 Temperature 310K
Pressure: 5.3 * 105 Pa
So the Ideal gas formula is PV = nRT
2.1*10^-4m^3 Times 5.3*105Pa = n * Gas Constant * Temperature
2.1*10^-4m^3 (*) 5.3*105Pa = # of moles *

I'm not sure what I was doing, but the whole equation stuff got hard and I stopped.
I left this question for 3 days, so I thought that I might ask for help.
 
Last edited by a moderator:
Physics news on Phys.org
ArcHorizon said:
2.1*10^-4m^3 Times 5.3*105Pa = n * Gas Constant * Temperature

You must invert the formula finding the number of moles ##n##, and after the number of atoms...
Ssnow
 
  • Like
Likes ArcHorizon
In your ideal gas equation

pV = nRT

all the quantities are given, except n. So solve for n. That is the first step. Now to nswer (ii), you need to know how many atoms thyere are in one mole of the ideal gas. Do you know that?
 
  • Like
Likes ArcHorizon
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...