Calculus Problem: Intgral Inequality w/ Positive Numbers

  • Thread starter Thread starter sit.think.solve
  • Start date Start date
  • Tags Tags
    Calculus
sit.think.solve
Messages
9
Reaction score
0
Suppose that
<br /> \alpha_1,...,\alpha_n<br />
are positive numbers. Show that
<br /> \int_{1}^{\infty}...\int_{1}^{\infty}\frac{dx_1...dx_n}{{x_1}^{\alpha_1}+...+{x_n}^{\alpha_n}}&lt;\infty<br />
if
<br /> \frac{1}{\alpha_1}+...+\frac{1}{\alpha_n}&lt;1<br />
 
Physics news on Phys.org
Hi. I've been thinking about this one, but I can't solve it. Where did you get this problem?
 
sit.think.solve said:
Suppose that
<br /> \alpha_1,...,\alpha_n<br />
are positive numbers. Show that
<br /> \int_{1}^{\infty}...\int_{1}^{\infty}\frac{dx_1...dx_n}{{x_1}^{\alpha_1}+...+{x_n}^{\alpha_n}}&lt;\infty<br />
if
<br /> \frac{1}{\alpha_1}+...+\frac{1}{\alpha_n}&lt;1<br />

I would try breaking this down into smaller, easier problems. What do you get for this integral?
<br /> \int_{1}^{\infty}\frac{dx_1}{{x_1}^{\alpha_1}+...+{x_n}^{\alpha_n}}<br />

Note that this is an improper integral, so the limits will need to be 1 and, say, b, and you'll need to take the limit as b -> \infty.

For the integral to converge, are there any restrictions on \alpha_1?

Then work with the double integral, with dx_1 and dx_2. For this integral to converge, what restrictions must be placed on \alpha_1 and \alpha_2?

That's how I would tackle this.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top