Mathman23
- 248
- 0
Hi
Given a function
z = f(x,y), where x = r * cos(\phi) and y = r * sin (\phi)
First I show that
\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} cos(\phi) + \frac{\partial z}{\partial y} sin (\phi)
and
\frac{\partial z}{\partial \phi} = - \frac{\partial z}{\partial x} r \cdot sin(\phi) + \frac{\partial z}{\partial y} r \cdot sin(\phi)
Finally I need to show that
(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2} (\frac{\partial z}{\partial \phi}) ^2
How do I approach this part of the problem?
Sincerley
Fred
Given a function
z = f(x,y), where x = r * cos(\phi) and y = r * sin (\phi)
First I show that
\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} cos(\phi) + \frac{\partial z}{\partial y} sin (\phi)
and
\frac{\partial z}{\partial \phi} = - \frac{\partial z}{\partial x} r \cdot sin(\phi) + \frac{\partial z}{\partial y} r \cdot sin(\phi)
Finally I need to show that
(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2} (\frac{\partial z}{\partial \phi}) ^2
How do I approach this part of the problem?
Sincerley
Fred
Last edited: