The basic approach in building a scale model of a physical system is to first express the operation of the system in terms of dimensionless variables. This can always be done. Then any scaled system which has the same values of these constants will operate in the same way. This cannot always be done. I know, this is esoteric and not much immediate help, but its true.
Regarding the pressurized vessel, why would one want the pressure to be the same?. Suppose it were a cylinder with a piston. If the pressure is operating on the cross sectional area of the piston, it produces a force, which will operate on the piston volume which has a particular density. If lengths are divided by 60, areas will be divided by 60^2, so at constant pressure, the force will be too. The volume being subjected to the force will be reduced by 60^3. For a constant density, the mass will be reduced by 60^3. From F=ma, the acceleration will be multiplied by 60. Since acceleration is length/time^2, this means the machine, using the same pressure and density of the piston, will operate sqrt(60) times faster than the original.
Using the dimensionless variables approach, there are five variables. m is your mass unit (e.g. kg), L is your length unit (e.g. meter), and t is your time unit (e.g. seconds)
p is the pressure in cylinder with dimensions ~ m/Lt^2
w is the length of the piston ~ L
r is the radius of the cylinder and piston ~ L
a is the acceleration of the piston ~ L/t^2
d is the mass density of the piston ~ m/L^3
Since there are 3 fundamental variables, (m,L,t) and 5 derived, there will be 5-3=2 dimensionless constants needed to describe the physics: f1=w/r and f2=p/daw.
If we want a scale model, these two dimensionless constants must stay the same. If we divide all lengths by 60, the f1 will stay the same, but f2 may not. If p and d stay the same and w is divided by 60, then a must be multiplied by 60, as found above. But we could change the pressure and piston density too, anything that left f2 the same would be acceptable. If you want the above scale model to operate at the same time scale as the original, you will have to change the p/d ratio.
For the locomotive, you would have to express its operations using equations involving only dimensionless variables, and then divide all lengths by 60, and hope you could finagle some way to adjust everything else so that all the dimensionless constants stay the same.