Can a 3-Space Be Isotropic About Two Distinct Points Without Being Homogeneous?

  • Thread starter Thread starter lark
  • Start date Start date
  • Tags Tags
    Homogeneity
AI Thread Summary
The discussion centers on whether a connected 3-space can be isotropic about two distinct points without being homogeneous, referencing Exercise 27.16. Laura presents a counterexample using the 3-sphere (S^3), suggesting that isotropy can exist around antipodal points with a radially symmetric matter distribution that varies in density. Christian acknowledges the difficulty in visualizing this example and suggests exploring explicit scalar fields on the 3-sphere to test the validity of Laura's claim. The conversation highlights the complexities of isotropy and homogeneity in higher-dimensional spaces. Ultimately, the debate raises questions about the nature of symmetry in cosmological models.
lark
Messages
157
Reaction score
0
http://camoo.freeshell.org/27.16wrong.pdf"

Mistake by the author?

Laura

Latex source below for quoting purposes but the .pdf may've been edited since then.

Exercise 27.16 asks you to show why a connected 3-space can't be
isotropic about 2 distinct points without being homogeneous.

Counterexample, though. Suppose the space is $S^3$, the
3-dimensional sphere. You could think of it as the equation for
$x^2+y^2+z^2+w^2=1$.

Then let the 2 separate points be antipodal points on the sphere. For
example $x=(1,0,0,0)$ and $-x=(-1,0,0,0)$.

You could have a matter distribution that was radially symmetric
around both of these points, because a rotation around x is also a
rotation around $-x$! But it doesn't have to be homogeneous. The
matter density could go up with distance from x or $-x$, up to the
"equator" $y^2+z^2+w^2=1$.

Am I missing something, or is this exercise just wrong?
\end{document}
 
Last edited by a moderator:
Space news on Phys.org
However if the universe were isotropic about 3 separate points, then it has to be homogeneous!

Laura
 
lark said:
However if the universe were isotropic about 3 separate points, then it has to be homogeneous!

Laura

Do you know a proof for this?

Christian
 
One trivial way is to constrain the space to be flat, but that's not what your getting at here :wink:. I'm still trying to visualize your example but failing. I can see a 2-sphere being isotropic around two poles and not homogeneous, but I'm having trouble with the 3-sphere. Maybe it would be fruitful to try to come up with an explicit expression for a scalar field on the 3-sphere that would satisfy isotropy around two points without being homogeneous and see if you can do it. That might either prove you right or the problem right. I am not sure if a rotation about (-1,0,0,0) is the same as a rotation about (1,0,0,0).

In the two sphere picture the rotations are the same because you are basically spinning a globe on its axis so the rotation isn't a general rotation about a point but one around an axis.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Why was the Hubble constant assumed to be decreasing and slowing down (decelerating) the expansion rate of the Universe, while at the same time Dark Energy is presumably accelerating the expansion? And to thicken the plot. recent news from NASA indicates that the Hubble constant is now increasing. Can you clarify this enigma? Also., if the Hubble constant eventually decreases, why is there a lower limit to its value?
Back
Top